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Abstract-Disaster Response Networks (DRNs) are designed 
to assist first responders during the recovery period following 
a large scale disaster. The system lifetime of deployed DRNs is 
critical to successful recovery, as are performance metrics such as 
packet delivery delay. In this paper we investigate the Pareto front 
between system performance and system energy consumption in 
such DRNs. The latter is further reduced compared to state 
of art methods by accepting the least possible performance 
penalty as a tradeoff. We observe that not all nodes in the 
network may consume or produce data; such relay nodes can 
be excluded from the routing process to save energy, but at the 
cost of decreased system performance. The problem is formulated 
mathematically using Raven as the underlying routing protocol. 
The Nondominated Sorting Genetic Algorithm II (NSGA-II) is 
used to obtain the Pareto-optimal points, and the DRN is made 
to operate at these points. Extensive performance evaluations 
demonstrate that a 162 minute increase in system lifetime is 
possible for a 61 minute increase in the packet delivery delay, 
while the packet delivery ratio remains almost constant. 

I. INTRODUCTION 

During the aftermath of a natural or man-made disaster, the 
lack of usable power and communication infrastructure ham­
pers the disaster recovery process. DRNs by design consist of 
self-powered wireless networking devices that can be deployed 
in an ad hoc fashion, creating a communications infrastructure 
in the process. Since these devices are spread over a large area, 
leading to a sparse network where disconnections are common, 
DRNs are also disruption and delay tolerant. DistressNet [1] 
is such a DRN that was developed by the authors. It's contri­
bution is a "fog computing" paradigm, where first responders 
can produce, consume and share large amounts of data akin 
to cloud computing, but while the cloud is spread over a large 
disconnected network. Because of the mission critical nature 
of the data as well as the scenario, it becomes essential to 
ensure both energy efficiency and high system performance. 

Energy consumption patterns in delay tolerant networks 
have been studied extensively [2], [3], [4], [5]. Reducing radio 
usage saves energy, and this can be achieved by either relaying 
less packets [6] or by discovering contacts [4] optimally. 
Because of sparse node density and large node inter-contact 
times [7], it is imperative that a node not miss any contacts. 
A hardware approach to saving energy involves the use of 
external hardware that alerts the node when a contact is in 
range [8]. 

This paper aims to not just reduce the energy consumption, 
but to do so in a Pareto optimal manner by quantifying 
the effect on system performance simultaneously. The energy 
consumption can be reduced further compared to state of art 
methods by accepting the lowest possible system performance 
penalty for the amount of energy to be saved. In other words 
this is the "ultimate" optimization that can be performed, in 
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the sense that performance is actively traded off for lifetime. 
Some relay nodes in a DRN may just relay packets (data 
waypoints in [1]) and not produce or consume data; energy 
consumption is reduced by completely excluding these nodes 
from the routing process. The number of nodes to be excluded 
and the choice of nodes influences the achievable performance, 
as do protocol specific parameters (e.g. the number of replicas 
in [9]). In DistressNet, the data flows (source-destination pairs) 
are not well known and are to be determined subject to some 
availability constraints - so there is the additional problem of 
determining these flows before the set of relay nodes can be 
determined. 

This cross layer approach to optimizing system lifetime 
and performance in a Pareto optimal fashion is formulated 
mathematically as a dual objective non-linear programming 
problem. NSGA-II is used to solve the problem and obtain 
the set of Pareto optimal points. The ability to operate a 
DRN (DistressNet in this case) at various Pareto-optimal points 
means that the users (first responders) can actively control the 
performance/energy tradeoff . .  The contributions of this paper 
are as follows: 1) the first (to the best of our knowledge) 
framework that is able to discover the Pareto front between 
system performance and energy consumption, 2) modeling the 
approach as a dual objective optimization problem that can 
be extended to other DRNs, 3) an algorithm to estimate the 
two objectives in DistressNet when Raven [10] is used as the 
underlying routing protocol, and 4) an improved chromosome 
generator that shortens the optimization runtime. 

II. MOTIVATION 

In this section we motivate this paper by analyzing various 
methods to save energy in a DRN, positing the existence of 
a Pareto front, and placing these methods along the Pareto 
front. In a DRN, mobile vehicles are used to mule data to 
and from static nodes (deployed at collapsed buildings, for 
example). Being spread over a large geographical area with 
few resources, the mobility in a DRN is very sparse. As a 
result, the node inter-contact time is on the order of tens of 
minutes or even hours: it is typical for a node to spend only 
about 20% of its lifetime in contact with at least one other 
node. This quantity is henceforth called the contact time (eT). 
This means that a node can afford to sleep in the inter-contact 
time (about 80%) and still not hamper the performance by 
missing any contacts. 

One of the trivial methods of energy saving in a DRN is to 
not save any at all - each node stays awake all the time. Net­
work performance is maximal, but so is the energy consumed 
("P:' in Figure 1). One simple optimization is to have the node 
sleep in the inter-contact time. Either mobility prediction or 
hardware assistance can be used to wake up the node. For 



Q) () 
c >­
ro:!: 
E ro 
..... c 
o Q) 'to.. Q) a.. 

Hardware Mobility 
Prediction Agnostic 

oXVtD'\\. 
J 

--+---....;;=--<. F O E': 
.................. -----_ .............. .. 

System Energy Consumption 
Fig. 1: The Pareto front between system performance and 
system energy consumption. Points A through F represent 
state of art approaches. The unexplored stretch of the Pareto 
front, where energy consumption is reduced by incurring a 
performance penalty, has not been explored. 

example, [8] uses long range auxiliary radios to detect a vehicle 
and subsequently wake up the node. In such a scheme ("E" in 
Figure 1), there is a reduction in energy consumed but no loss 
in performance. These prediction schemes are not completely 
optimal; replacing it by an oracle [11] ("D" in Figure 1) could 
possible save a little more energy. 

It is important to note that saving energy purely in software 
(by minimizing the number of transmitted messages at the 
routing layer) or only on the radio interface (by enabling 
802.11 PSM mode) will not save much energy. This is because 
the energy consumed by the radio interface in a typical 
WiFi router is much less than that consumed by the base 
board. Low power sensor networks, however, have the opposite 
characteristic. Table I compares a WSN mote, a hand held 
WiFi smartphone and a WiFi router. As we can see, the power 
consumed by a router's radio (O.72W) can be 5x smaller than 
the base board (3W). A scheme that aims to minimize the 
number of relayed messages, as compared to "p(', will have 
low performance but will save a little energy ("B" in Figure 1). 

Device I Radio Power Cons. I Base Power Cons. I 
Sensor O.06W O.OO6W 

Smartphone O.7W O.2W 
Router O.72W 3W 

TABLE I: Power consumption of various device classes. Sen­
sor: based on a 3V Epic mote with 802.15.4. Smartphone -
based on 3.7V HTC Evo 4G with 802.1l. Router - based on 
12V Mikrotik RB433UAH router with 802.1l. 

Depending on the routing protocol that is used, not all con­
tacts may involve transfer of data. For example, in RAPID [12] 
a node transfers packets only to a node with higher utility. 
An optimization that could be performed here is to have a 
low capacity backhaul link, such as a satellite link, that nodes 
can use to query the buffer contents of any other node and 
thus calculate the utility or any similar metric. As a result, a 
node can infer whether a vehicle has any packets that could 
be transferred; if not, it can sleep through the contact. Such a 
scheme ("F" in Figure 1) represents the most energy that can 
be saved without any performance penalty. The percentage of 

Fig. 2: Illustrating the fog in a deployed DRN. Buildings 
Bl,B2,B3 are Centers (in PDMM parlance) and have a fog 

device on them. Mobile Agents VI (ambulance) and V2 (patrol 
car) travel between the three Centers, and have a wireless 
router but are not fog devices. Fog users with a smartphone 
connect to a fog device for access. 

contact time that involves useful transfer of data in relation to 
the node lifetime is called the useful contact time (UCT). 

Key Idea Given the above background, we investigate in 
this paper the existence of a Pareto front in a DRN, assuming 
that a scheme such as "F" is already present (such a scheme 
does not exist to the best of our knowledge; designing it is a 
research problem in itself, and not the focus of the paper). The 
major intuition is that if some nodes can be excluded from the 
routing process, then those nodes can save energy by sleeping. 
However there is a performance penalty involved; it is the 
aim of this paper to quantify this trade off and investigate the 
feasibility of operating at various points on the Pareto front. 
It has to be mentioned that knowledge of data flows in the 
network is essential, and is explained in the next section. 

III. PRELIMINARIES AND PROBLEM FORMULATION 

In this section we first present the data production and 
consumption model in DistressNet, followed by a short expla­
nation of Raven, the underlying routing protocol. After these 
preliminaries, the problem is formulated mathematically. An 
NSGA-II based solution is proposed to solve this problem, 
followed by a numerical example to further clarify these 
concepts. 

A. Preliminaries 

DistressNet [1], our previous work, is a DRN designed 
for Urban Search & Rescue first responders. In this system, 
traditional cloud services like Twitter and Amazon S3 are 
instantiated in a disconnected DRN called the "fog". Users, 
in this case the first responders, are able to upload files to the 
fog, retrieve them later or share with other users. Physically, 
the fog is comprised of several DistressNet devices which 
are COTS wireless routers. These routers use delay tolerant 
networking to synchronize and transfer files among each other. 
A major feature of the fog is that users can upload files without 
specifying an IF address or a hostname of a device - unlike 
uploading to FTP for example. The back end service, in this 
case the fog service that runs on routers, intelligently chooses a 
device on which to replicate data. Figure 2 shows the working 
of the fog in DistressNet. There are three collapsed buildings 



B 1, B2 and B3 with a COTS wireless router inside. Two 
other devices on vehicles V 1 and V2 serve as data mules for 
delay tolerant networking, but are not fog devices - fog users 
cannot access their files on these devices. The heterogeneous 
nature of data means that each stream may have different QoS 
requirements. Raven is a QoS aware routing protocol for DRNs 
that can be tuned to improve the jitter, which is the variance 
of the packet delivery delay. We now provide a short overview 
of routing in a fog as well as the Raven routing protocol. 

1) Firm and Potential F lows in a Fog: Data flows in the 
fog are not concretely defined since the fog back end has to 
choose endpoints optimally. A firm flow is one whose source 
and destination are well known (as IF addresses, host names or 
a DTN URI for example). For example, a firm flow can exist 
between Bl and B2 in Figure 2. A potential flow's source is 
well known, but its destination is simply the fog. It is up to 
the fog service to convert each potential flow into one or more 
firm flows. The exact number of firm flows created depends 
on the potential flow's availability metric which ranges from 
0-100%. It denotes the importance of the data. An availability 
of 100% means that data will be available on all Fog devices: a 
firm flow is created from the source to every other fog device. 
An availability of 25% means that data will be available on 
a quarter of all fog routers: a subset of devices is chosen and 
firm flows are created to each of them. For example, a potential 
flow with 50% availability can exist between B3 to the fog in 
Figure 2. It is up to fog service to create a flow from either 
B3 to B2 or B3 to B 1. More critical data will have higher 
availability. This process of choosing a subset of devices has 
implications on the system's performance - and is solved by 
the problem formulation below. 

2) The Raven Routing Protocol: We use Raven [10] as 
the underlying DRN routing protocol. It is able to control 
QoS metrics in the DRN, especially the variance of the packet 
delivery delay, by using risk aversion techniques. The mobility 
in the area is assumed to follow the Post Disaster Mobility 
Model [13]. In this model, Centers refer to static areas in 
the disaster area such as the triage or a collapsed building 
or the fuel depot. There are several types of Mobile Agents 
which move between Centers according to various patterns. 
For example, an ambulance chooses a Center at random to 
travel to but always returns to the Triage before repeating the 
process. It is assumed that there is a fog device present at each 
Center. Going back to Figure 2, two Mobile Agent categories 
are illustrated - ambulance (VI) and patrol car (V2). They 
move between three Centers which are collapsed buildings 
Bl,B2,B3. 

This mobility model is represented by a stochastic multi­
graph. The edge weights in a stochastic graph are not scalars 
but are distributions with a mean and variance: the risk is 
computed as a linear combination of mean and variance. It 
is called a multigraph since multiple edges are possible be­
tween vertices. In Raven, each vertex corresponds to a Center 
whereas each edge corresponds to a Mobile Agent category. 
The edge weights represent the physical travel delay incurred 
by a vehicle of that particular category, in traveling between the 
two incident Centers. Thus, each edge has a unique travel delay 
distribution depending on the mobility patter as well as the 
geographic location of its Centers. The stochastic multigraph 
for the scenario in Figure 2 is shown in Figure 3. Centers 

82 (10,5) 83 
Fig. 3: The stochastic multigraph for the scenario in Figure 2. 
There are 3 vertices corresponding to 3 Centers, and 2 edges 
between every pair that correspond to the 2 Mobile Agent 
categories ambulance and patrol car. Edge weights are the 
(mean, variance) of the travel delay for that particular Mobile 
Agent category. This graph is based on mobility only, and is 
not affected by flows, either firm or potential. 

Bl,B2,B3 correspond to vertices Bl,B2,B3 respectively. Two 
edges between Bl and B3 correspond to ambulance and patrol 
categories. The edge weight is the travel time distribution 
(N(7,3) minutes) for that category (ambulance) between the 
two incident centers (B 1 to/from B3). 

Raven works by using this graph to determine a set of paths 
between source and destination - i.e., on a per-flow basis. The 
K-Shortest Paths algorithm is modified to handle stochastic 
weights. The number of paths to be determined, K, as well 
as the risk aversion coefficient p (risk = mean + p*variance), 
are supplied by the user. To summarize, Raven computes K 
paths for each firm flow; and the performance of the protocol 
depends on the values of K and p as discussed in [10]. For 
example, for the B 1 to B2 firm flow mentioned before, Raven 
could choose 2 paths Bl-ambulance-B2 and Bl-ambulance­
B3-patrolcar-B2 depending on p. 

Key Idea: The major insight in this paper is that if a fog 
device (at a Center) is not on one of the paths chosen by 
Raven to route data, it can sleep and save energy. Thus, the 
number of unique nodes present in the set of paths for all flows 
is an indicator of the energy consumption. This number can 
be reduced in a variety of ways: in the process of converting 
potential flows to firm flows (choosing Centers such that flows 
overlap) or in Raven (by reducing K or by choosing a set 
of paths other than the shortest). However, these techniques 
affect the system's performance - and therefore, there is a 
Pareto frontier between performance and energy consumption. 
Additionally, the user can control the operating point along 
this frontier by simply changing system parameters like those 
used by Raven. 

B. Problem Formulation 

The disaster area consists of c centers 01 ... Oc and is 
represented by the stochastic multigraph S. There are f firm 
flows Fl ... Ff and their sources/dests {FiS}/ {FF}. p poten­
tial flows PI ... Pp, their availabilities Al ... Ap and sources 
{PP} but no destinations. Thus the total number of flows is 
h = f + L:f=11 cAi l· Each of these h flows has an associated 
parameter kl ... kh that is used by Raven (the number of paths 



to compute). The user has specified a global Raven parameter 
K: as a result, 1 :s: ki :s: K. When Raven computes paths for 
each of these h flows, let the number of unique Centers in the 
union of these paths be c :s: c. 

Now since S is stochastic, each path in this graph has 
an associated mean and variance (equal to the sum of 
means/variances of the constituent edges), and is hence a 
distribution. The path weight represents the packet deliv­
ery delay because the physical travel delay in a DTN is 
a major component of the packet delivery delay [7]. When 
a packet is sent on k paths simultaneously, the expected 
delay is the minimum of the delays of the k individual 
paths; it follows that the per-flow packet delivery delay is 
the minimum of k normally distributed random variables. For 
the flow numbered i with paths parameter ki, the delay is 
Di = min{ Dil' Di2, ... ,DikJ where each D is a distribution 
and not a scalar. A closed form expression for this minimum 
of several random variables is not trivial. For h flows, the 
overall packet delivery delay distribution is D = L�-h" Di 

where to re-emphasize, all quantities except h are normally 
distributed random variables with a mean and a variance. Using 
the mean-risk probability model, the risk of this distribution 
D is risk eD) = E[D] + P * JV[D]. 

Given the above notation, our objective is to minimize the 
delay (which is called risk when variance is taken into account, 
i.e., risk eD) := E[D] when p = 0) as well as c. There are 
three parts to this problem: (1) the conversion of potential 
flows to firm flows, (2) applying Raven to each of the firm 
flows so that the delay distribution D can be estimated, and 
(3) tuning Raven's K parameter so that energy and risk eD) 
are minimized. The above three problems are solved in a single 
optimization problem as follows. To convert a potential flow 
Pi into I CAi l firm flows, consider a binary vector V of length 
c. The ith element Vi corresponds to Center Gi: Vi = 0 if the 
Center is not chosen as a destination, and Vi = 1 otherwise. 
The sum of this bit vector should be I CAi l. Repeating this 
procedure for p potential flows, the length of V becomes 
pc. Because Raven needs a K parameter for each flow, V is 
augmented with h more integers. Thus, the vector V of length 
(pc + h) can now be used as input. It is a dual objective non­
linear program: 

min 
v 

s.t. 

RISK(V), UNIQ(V) 

c 
L V(i-l)c+j = IcAil, i = 1 ... p 
j=1 
1 :s: Vi :s: K, i = (pc + 1) ... (pc + h) 

(1) 

(2) 

(3) 

Constraint 2 deals with potential flows. It stipulates that 
the total number of firm flows created (by setting a Center's 
bit) for each potential flow equals I CAi l. Constraint 3 makes 
sure that the K parameter needed by Raven cannot exceed the 
global value of K specified by the user. Equation 1 involves 
two procedures RISK and UNIQ which calculate risk eD) and 
c respectively. 

Procedure 1 details the calculation of the two objectives. 
Steps 1-7 involve the creation of firm flows from potential 
flows: for each potential flow (Step 1), if the bit corresponding 
to a Center is set (Step 3), a new firm flow is created (Step 4). 
Now that all h firm flows have been created, Raven is applied 

to each of these (Step 9) along with the Raven parameter 
K (Step 10). The resulting set of ki paths are collected 
and duplicates are removed (Step 11). The number of unique 
vertices in these paths is nothing but the number of unique 
Centers (Step 13) since each vertex in the stochastic multigraph 
corresponds to a Center. The delay distribution, which is the 
path weight of each of these paths is calculated (Step 14), 
averaged (Step 15) and the risk is calculated (Step 16). 

Procedure 1 RISK(V) and UNIQ(V) 

Input: vector V, firm flows {F}, K,p 
1: for i : = 1 ... p do 
2: for j := 1 ... c do 
3: if V(i-l)c+j == 1 then 

4: F +- F U (a new firm flow between PiS and Cj) 
5: end if 
6: end for 
7: end for 
8: paths +- <I> 
9: for i := 1 ... h do 

10: {Qk} +- (Raven with sid FP & FP, k-parameter Vpc+il 
11: paths +- paths U {Qk} 
12: Di +- min{Ql, Q2, Q3 ... QK} 
13: end for 
14: UNIQ(V) = c +- unique nodes in paths 
15: RISK(V) +- CL:7=1 E[DiJ + p * JV[Di])/ h 
16: return RISK(V),UNIQ(V) 

C. Solution 

Equation 1 is a dual objective, non-linear optimization 
problem. Because of its complexity, a stochastic optimization 
approach is preferred, as opposed to a deterministic one. 
Evolutionary algorithms are specially suited to solve multi­
objective problems - and genetic algorithms (GAs) are the most 
popular variety of evolutionary algorithms. We use the NSGA­
II algorithm to solve Equation 1, owing to its speed and low 
complexity. It is also able to handle disconnected Pareto fronts. 

The input to the algorithm, vector V (Equation 2), is 
referred to as a "chromosome" in GA parlance. It is a string 
of numbers, either binary or real valued (in this case, integer 
valued). Through multiple GA operations like crossover, se­
lection and mutation, new candidate solutions are generated 
in a stochastic fashion. The current set of candidate solutions 
(the "population") is evaluated (the "fitness" is calculated) and 
filtered to retain only non-dominated solutions. NSGA-II gives 
preference to Pareto optimal points that are situated far away, 
so as to capture both extremes of the front. The crossover 
operator used is Simulated Binary Crossover (SBX), since 
the chromosome is real valued. Mutation occurs according 
to the Polynomial operator. Selection happens in a Binary 
Tournament fashion. 

D. Example 

The above approach to solving Equation 1 is illustrated 
using Figure 3. Suppose that there is a firm flow from B 1 to 
B2, and a potential flow from B3 with an availability of 0.5. 
The task is now to convert this potential into either a firm 
flow from B3 to B1, or B3 to B2. For each choice, a K value 
is to be determined for each of the flows including the firm 
flow. The first step is to construct vector V which has a total 



length of 3 (one potential flow, three centers) plus 2 (two firm 
flows in total) = 5 elements. Let an example chromosome be 
V = [0 1 0 2 2] (input in Procedure 1). Assuming that the first 
three elements stand for B 1, B2 and B3, the vector indicates 
(Step 3) that the potential flow is to be converted into a firm 
flow from B3 to B2 (Step 4). The two firm flows BI-B2 and 
B3-B2 each have K = 2 (Step 10). For the BI-B2 flow, there 
are six possible routes, two from B 1 to B2 directly for each 
vehicle category, and four from B 1 to B2 through B3. Applying 
Raven will determine the two best paths from these 6. Similarly 
for the B3-B2 flow, two best paths will be determined, resulting 
in two sets of two normal distributions. Step 12 reduces each 
set to one distribution (the minimum distribution), and Step 15 
takes the average of these two minimum distributions, resulting 
in a single number RISK(V) = 5 (for example). UNIQ(V) 
in this case is 3 since all three vertices have to be involved 
in data transfer. The resulting point is (5,3) which is then 
evaluated by NSGA-II to determine if it's a Pareto Point or 
not. The chromosome then mutates to, say V = [1 0 0 3 1] 
and the whole procedure is repeated. 

IV. PERFORMANCE EVALUATION 

In this section we present the performance evaluation of our 
energy saving scheme. First, the existence of the Pareto front is 
confirmed by implementing NSGA-II and solving Equation 1, 
for a given scenario with Centers, Mobile Agents, potential 
and firm flows. Using a DTN simulator, the mathematical 
modeling is validated by running Raven at the Pareto points 
and verifying that the delay decreases when energy increases 
and vice-versa. Two of these points (the extremes) are chosen, 
and the Raven protocol is then evaluated at each of these Pareto 
optimal points, and compared with state of art DTN routing 
protocols such as MaxProp, RAPID and Prophet. Metrics used 
for comparison are packet delivery delay (PDD), the packet 
delivery ratio (PDR), the number of relayed messages (REL), 
and the total awake time (TAT). REL refers to the total number 
of packet transfers in the network across all nodes. TAT is the 
sum total of the awake time across Centers only, assuming 
that nodes stay awake only during those contacts where is 
transfer of data and that Mobile Agent nodes are powered 
by the vehicle's battery. The former assumption is justified 
by the existence of a low bitrate backhaul link which allows 
nodes to determine each other's buffer contents, as explained 
in Section 2.1. We have chosen REL in addition to TAT for fair 
comparison: only Raven is optimized for Center-only energy 
savings (TAT) while other protocols aim to reduce REL across 
all nodes. TAT is a better metric that UCT since the TAT 
represents all nodes of interest (namely Centers), whereas UCT 
is an average across all nodes. 

A. Obtaining the Pareto Front 

On the Helsinki street map, an EOC, a Triage and 25 Cen­
ters (collapsed buildings) were setup, their locations chosen 
randomly. A firm flow was setup from Building 1 to 9 as well 
as a potential with availability of 0.1 originating at the EOC, 
for a total of 4 (= 1 + 127 x 0.1l) flows. Three ambulances, 
three supply vehicles and 10 volunteers moved according to 
their respective mobility models. The stochastic multigraph for 
this scenario was computed. 

A Java implementation of NSGA-II was provided by the 
jMetal package: the parallel version where each chromosome is 
evaluated in a separate thread was chosen. After implementing 
Algorithm 1 within the jMetal framework, a Pareto front with 
22 points was obtained and is shown in Figure 4a. As expected, 
energy consumption (Y axis) can be minimized only at the cost 
of increased delay (X axis). Pareto Point 1 utilizes all the 27 
Centers with K values of [197 164 196 144] for each of the 
4 flows, while Point 22 used only 4 unique Centers with K 
values of [2 4 3 4]. 

Optimization: This setup initially had long run times since 
the constraint handling extensions of NSGA-II were not im­
plemented. The probability of obtaining a randomly generated 
chromosome that satisfied (Equation 2) was low, and decreased 
as the number of Centers increased. We developed an improved 
chromosome generation subroutine that produced high quality 
initial solutions. First, elements 1 ... pc of the input vector V 
were set to zero. Then, for each sub-vector of V corresponding 
to each of the p potential flows, 1 CAi l elements were randomly 
chosen and set to unity, satisfying Equation 2. As a result, 
each generation (iteration) in NSGA-II had valid chromosomes 
that were not discarded, leading to evaluation of more and 
more chromosomes, and the discovery of many more Pareto­
optimal points. The chromosome generator was additionally 
biased to produce values near the lower/upper bounds as it 
was found that the ends of the Pareto front were not probed 
sufficiently even with 20,000 iterations. The run time was 
reduced dramatically, resulting in quicker experimentation. 

B. Verfifying the Pareto Front 

The performance of Raven as it is made to operate at 
various Pareto points is shown in Figure 4. Data for this and 
subsequent sections was obtained using TheONE, a Java based 
opportunistic network emulator at the packet level and not 
NSGA-II. The data workload per flow was 300MB, all created 
at t = 0 and the radio bitrate was 8MBps. The entire simulation 
lasted for 166.67 minutes and each data point is averaged over 
200 random runs. For flows with high K values (> 140), 
Raven was made to flood packets generated on that particular 
flow. This was because K = inf chooses all possible paths in 
the network and is equivalent to flooding. The K-Safest Paths 
algorithm of Raven suffers increasing runtime as K increases -
this optimization was performed to reduce the simulation time. 

Point 1, as defined in Figure 1 optimizes the PDD at 
the cost of high energy consumption. This is confirmed in 
simulation since the PDD for Point 1 (Figure 4b) is the lowest, 
whereas the TAT (Figure 4d) is the highest. The TAT represents 
the system-wide energy consumption of the nodes at Centers 
- thus a high TAT means high energy consumption. A similar 
observation holds for Point 22, confirming the correctness of 
the problem formulation presented in Equation 1. Surprisingly, 
the PDR (Figure 4c) is fairly constant across all Pareto points. 
This can be explained by the fact that each potential flow 
results in a different set of firm flows for each Pareto point, 
suggesting that PDR depends on the physical location of the 
involved Centers. The TAT decreases by about 81% as we 
move towards the energy-optimal end of the Pareto front, 
while the PDD increases by 2.2x. To summarize, the NSGA-II 
based optimizer provides the user with a variety of Pareto­
optimal points, each of which represents a unique balance 
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between performance and energy consumption: for a �61 
minute increase in PDD, the total awake time of Centers 
decreases by � 162 minutes when moving along the Pareto 
front. 

C. Delay Optimal Raven 

We first operate Raven at the delay optimal Pareto point 
(Point 1 in Figure 4a), and compare it with state of art 
protocols. Increasing the data workload per flow will saturate 
the network while the contact opportunities remain the same, 
resulting in higher PDD and lower PDR, while increasing radio 
bitrate allows more data to be transferred per contact - the 
expected result is that PDD should be lower and PDR higher. 
The results are shown in Figure S. 

1) Effect of workload: Across all workload sizes, the 
PDD of Raven is the lowest compared to other protocols 
(Figure Sa) while it delivers the most number of packets 
(Figure Sb). Due to the flooding nature of Raven at high 

K values, it relays the most packets (Figure Sc). MaxProp 
replicates packets till an ACK is received. However, the TAT 
of MaxProp is larger (Figure Sd), suggesting that static Centers 
tend to relay more packets than the mobile vehicles. In general, 
the PDD and the number of relayed packets increase with 
increasing workload, as expected. Both Prophet and RAPID 
perform selective forwarding, relaying packets to only those 
nodes with a higher probability of reaching the destination 
(Prophet) or based on the marginal utility of relaying a packet 
(RAPID). Since RAPID makes a relaying decision based on 
the decreasing order of marginal utilities for each packet in the 
buffer, it relays more packets than Prophet and less packets 
than MaxProp/Raven. To summarize, Raven has the lowest 
PDD and highest PDR, but it also consumes more energy 
(considering relayed packets) than MaxProp. 

2) Effect of bitrate: Increasing the radio bit rate allows 
more packets to be transferred per contact, while keeping the 
total amount of contact time constant. In general, all protocols 
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show reduced PDD (Figure 5e), increased PDR (Figure 5f) and 
increased number of relayed packets (Figure 5g). The decrease 
in TAT (Figure 5h) suggests that Centers save more energy 
even when the number of relayed packets increases. Since 
each node only transfers those packets that the other node 
does not have, Centers tend to collect all the unique packets 
within a short amount of time. This is because the probability 
of a vehicle meeting a Center is very high (due to their 
mobility models compulsorily involving Centers) compared to 
the probability of meeting another vehicle. With increasing 
radio bit rate, nodes are able to disseminate all of the generated 
data (note that no new data is generated after t = 0). Therefore, 
towards the end of the deployment, the number of contacts 
which involve transfers of unique packets decreases - thus 
decreasing the TAT. To summarize, Raven has the lowest PDD, 
delivers and relays more packets than other protocols, while 
showing a reduction in Center energy consumption. 

D. Energy Optimal Raven 

Next, we operate Raven at the Pareto point which guar­
antees the highest energy savings at the cost of PDD (Point 
22 in Figure 4a), and compare it with state of art protocols. 
Compared to the previous subsection in which Raven operated 
at Point 1, the endpoints chosen for conversion of potential 
flows to firm flows are different but still satisfy the availability 
constraints. State of art protocols are evaluated with the same 
final firm flows as Raven for fairness. Results are shown in 
Figure 6. The axes in each of the figures is identical to Figure 5 
for ease of comparison. 

1) Effect of workload: Raven has the least energy con­
sumption, both in terms of the number of relayed packets 
(Figure 6c), as well as the total awake time metric (Figure 6d), 
across all data workloads. Additionally it delivers the most 

packets (Figure 6b) compared to other protocols. However, the 
delay is higher than the others (Figure 6a), since the number 
of unique Centers used is only 4. Other protocols do not 
have this constraint and are free to relay packets to any node. 
Raven has only a limited number of paths it can use to relay 
packets, leading to congestion on these paths, resulting in a 
high PDD. Compared to Figure 5a, the average delay for Raven 
is higher by about an hour. This is a fairly small price to pay 
for having the least energy consumption while delivering the 
most packets. MaxProp, an epidemic-like routing protocol has 
the least delay and second best PDR, but at the cost of high 
energy consumption. For comparison, MaxProp relays 5x as 
many packets as Raven and based on TAT, has 5x the energy 
consumption. Even then, it does not deliver as many packets 
as Raven can. 

2) Effect of bitrate: Once again, compared to the delay 
optimal variant (Figure 5), Raven has the least energy con­
sumption both in terms of the number of relayed packets 
(Figure 6g) as well as the total awake time of Centers (Fig­
ure 6h), while delivering the most packets (Figure 61). Similar 
trends are observed, such as increasing PDR, decreasing PDD, 
increasing REL and decreasing TAT with an increase in radio 
bitrate. Raven is found to consume almost 80% less energy 
than MaxProp, while delivering about 10% more packets. 
To summarize, it is possible to achieve very low energy 
consumption while keeping the PDR constant, but only at the 
cost of increased PDD. A high bit rate can reduce the energy 
consumption even further. 

Summary: Operating on the delay optimal extreme of the 
Pareto front demonstrates the lowest PDD, highest PDR and 
high RELITAT; the energy optimal extreme demonstrates the 
lowest RELITAT at the same PDR but at the cost of increased 
PDD. Increasing the workload per flow hampers the PDD. 



V. RELATED WORK 

Energy efficiency is an important concern to a DRN's user: 
high or non-uniform energy consumption can lead to network 
failure, low performance or violation of user constraints. 
These concerns are doubly important in highly challenged 
environments such as the post-disaster recovery process. Here 
we describe some recent research in the area of energy aware 
delay tolerant networking. For an overview of delay tolerant 
routing, the reader is referred to our previous work [lO]. 

Software based approaches aim to minimize radio usage 
by reducing neighbor discovery overhead and/or reducing data 
transfers. The number of transmitted messages has been a 
metric in the performance evaluation of many DTN routing 
protocols [9] [13]. The scheme in [4] saves energy by adjusting 
the contact probing frequently optimally. For data transfers, 
epidemic routing is a simple protocol where each packet is 
replicated to every encountered node; this energy-inefficient 
approach has been the concern of recent research. The authors 
of [5] model energy efficient epidemic routing as an optimal 
control problem, while the authors of [6] propose that a packet 
be transmitted only when the number of neighbors reaches 
a threshold so as to reduce energy. Markov chains are used 
to model message dissemination performance of two routing 
protocols [3], and an optimal dynamic forwarding policy is 
derived. Yet another approach is to limit the maximum number 
of replicas a packet can have in the network [9]. Network 
coding [14] reduces the number of bits transmitted and hence 
the energy used by the radio. Forwarding packets to socially 
close nodes may increase performance, but simultaneously 
causes rapid energy depletion [15]. Intercontact routing [13] 
is perhaps the most similar to this work in the sense that it 
uses the post disaster mobility model as well as graphs with 
stochastic weights; however the objective of this paper is to 
quantify the effect of excluding certain nodes from routing on 
the performance (i.e., a hardware based approach), and is not 
concerned with the number of transmitted messages. 

Hardware based approaches to saving energy in DTNs 
are far and few. In [8], the authors propose the use of a multi­
tier platform that involves a long range, low bitrate radio that 
can wake up a short range, high bitrate radio. An optimization 
problem maximizes the number of bytes transferred while 
meeting a power consumption constraint. Using traditional low 
power, short range radios like 802.15.4 has been shown to be 
un-optimal for sparsely populated DTNs [2]. Energy efficient 
MAC protocols are useful for traditionally dense networks like 
MANETs, but inefficient for sparse DTNs with high inter­
contact times. A different approach involves controlling the 
mobility of nodes to alter network performance [16], but in this 
paper we assume that node mobility is externally controlled. 
While these approaches aim to be awake for every contact, 
this paper has a completely different idea of intentionally 
sleeping during node contacts and examining the effect on 
routing performance. The work in [17] formulates the delay­
energy tradeoff as a control problem, but there is no mention 
of Pareto optimality. It is also not known if the approach valid 
for non-probabilistic forwarding based protocols (i.e., where a 
packet is forwarded to a node based on probability p, a system 
parameter). 

VI. CONCLUSIONS 

We have presented a framework to characterize the Pareto 
front between system performance and energy consumption. 
Certain nodes in the network which only relay data but do 
not produce or consume it, can be excluded from the routing 
process to save energy - at the cost of performance. A dual 
objective non-linear program is formulated with Raven as the 
underlying routing protocol, and is then solved using NSGA­
II. A set of Pareto optimal points is found, along with the 
respective network settings (potential flow endpoints and K 
values for each firm flow). For a 61 minute increase in delivery 
delay, a 81 % decrease in energy consumption is achieved while 
the packet delivery ratio remains almost constant. The setup 
is evaluated using TheONE simulator and compared against 
state of art protocols. 

Acknowledgements: This work was funded in part by NSF 
grants #1127449, #1145858, #0923203. 

REFERENCES 

[l] H. Chenji, w. Zhang, R. Stoleru, and C. Arnett. Distressnet: A disaster 
response system providing constant availability cloud-like services. Ad 
Hoc Networks, 2013. 

[2] H. Jun, M. H. Ammar, M. D. Corner, and E. W. Zegura. Hierarchical 
power management in disruption tolerant networks with traffic-aware 
optimization. CHANTS 2006. 

[3] Y. Li, Y. Jiang, D. Jin, L. Su, L. Zeng, and D. Wu. Energy-efficient 
optimal opportunistic forwarding for delay-tolerant networks. IEEE 

Transactions on Vehicular Technology, 2010. 
[4] w. Wang, M. Motani, and V. Srinivasan. Opportunistic energy-efficient 

contact probing in delay-tolerant applications. IEEElACM Transactions 

on Networking, 2009. 
[5] M. Khouzani, S. Eshghi, S. Sarkar, N. B. Shroff, and S. S. Venkatesh. 

Optimal energy-aware epidemic routing in dtns. MobiHoc 2012. 
[6] X. Lu and P. Hui. An energy-efficient n-epidemic routing protocol for 

delay tolerant networks. NAS 2010. 
[7] H. Zhu, L. Fu, G. Xue, Y. Zhu, M. Li, and L. Ni. Recognizing 

exponential inter-contact time in vanets. INFOCOM 2010. 
[8] N. Banerjee, M. Corner, and B. Levine. Design and field experimenta­

tion of an energy-efficient architecture for dtn throwboxes. TEEEIACM 

Transactions on Networking, 2010. 
[9] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray and wait: an 

efficient routing scheme for intermittently connected mobile networks. 
WDTN 2005. 

[10] H. Chenji, L. Smith, R. Stoleru, and E. V. Nikolova. Raven: Energy 
aware QoS control for DRNs. WiMob 2013. 

[11] S. Jain, K. FaU, and R. Patra. Routing in a delay tolerant network. 
SIGCOMM '04. 

[12] A. Balasubramanian, B. N. Levine, and A. Venkataramani. Replication 
Routing in DTNs: A Resource Allocation Approach. TEEEIACM 

Transactions on Networking, 2010. 
[13] M. Y. S. Uddin, H. Ahmadi, T. Abdelzaher, and R. Kravets. Intercontact 

routing for energy constrained disaster response networks. IEEE 

Transactions on Mobile Computing, 2013. 
[14] J. Widmer and J.-Y. Le Boudec. Network coding for efficient commu­

nication in extreme networks. WDTN 2005. 
[15] C. Chilipirea, A. Petre, and C. Dobre. Energy-aware social-based 

routing in opportunistic networks. WAINA 2013. 
[16] w. Zhao, M. Ammar, and E. Zegura. Controlling the mobility of 

multiple data transport ferries in a delay-tolerant network. INFOCOM 
2005. 

[17] E. Altman, T. Baar, and F. D. Pellegrini. Optimal monotone forward­
ing policies in delay tolerant mobile ad-hoc networks. Petformance 
Evaluation, 2010. 


