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Toward Accurate Mobile Sensor Network
Localization in Noisy Environments

Harsha Cheniji, Student Member, IEEE, and Radu Stoleru, Member, IEEE

Abstract—The node localization problem in mobile sensor networks has received significant attention. Recently, particle filters
adapted from robotics have produced good localization accuracies in conventional settings. In spite of these successes, state-of-the-
art solutions suffer significantly when used in challenging indoor and mobile environments characterized by a high degree of radio
signal irregularity. New solutions are needed to address these challenges. We propose a fuzzy logic-based approach for mobile node
localization in challenging environments. Localization is formulated as a fuzzy multilateration problem. For sparse networks with few
available anchors, we propose a fuzzy grid-prediction scheme. The fuzzy logic-based localization scheme is implemented in a
simulator and compared to state-of-the-art solutions. Extensive simulation results demonstrate improvements in the localization
accuracy from 20 to 40 percent when the radio irregularity is high. A hardware implementation running on Epic motes and transported
by iRobot mobile hosts confirms simulation results and extends them to the real world.

Index Terms—Node localization, wireless sensor networks, mobility, fuzzy logic

1 INTRODUCTION

WIRELESS sensor networks (WSNs) are increasingly a
part of the modern landscape. Disciplines as diverse
as volcanic eruption prediction [1] and disaster response [2]
benefit from the addition of sensing and networking. A
common requirement of many wireless sensor network
systems is localization, where deployed nodes in a network
discover their positions.

In some cases, localization is simple. For smaller net-
works covering small areas, fixed gateway devices and one-
hop communications provide enough resolution. Larger
networks may be provisioned with location information at
the time of deployment [3].

However, in many common environments, localization
is more difficult. GPS-based localization may be unreliable
indoors, under forest canopies, or in natural and urban
canyons. For example, GPS is used for high-precision asset
tracking in [4] but fails indoors. Signal strength-based
solutions similarly fail when there is a high degree of RF
multipath or interference. The solution proposed in [5]
relies on accurate measurement of RF TDOA and distance
traveled and quickly degrades as accuracy decreases. Radio
interferometry localizes nodes to within centimeters in [6]
but fails in multipath environments. Mobile beacons roam
an outdoor environment in [7] but localization requires a
dense network and assumes favorable conditions. All these
solutions rely on stable environments with low multipath,
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where measured or sensed ranges (which are typically
obtained by time of arrival, angle of arrival or received
signal strength (RSS) techniques) reliably predict the actual
distance between two nodes. For low multipath environ-
ments, accurate models have been proposed for estimating
time of arrival, angle of arrival, and received signal
strength [8].

Mobility complicates the localization problem since node
to node distance variations and environment changes (e.g.,
due to node mobility or interference from an external
source) introduce additional effects, such as small-scale
fading. Due to the relative motion between mobile nodes,
each multipath wave experiences an apparent shift in
frequency (i.e., the Doppler shift), directly proportional to
the direction of arrival of the received multipath wave, and
to the velocity/direction of motion of the mobile [9]. Due to
environment changes (i.e., objects in the radio channel are
in motion), a time varying Doppler shift is induced on
multipath components. Consequently, in such environ-
ments affected by small-scale fading, it is challenging to
use simple connectivity (which itself can vary dramatically
[10]) or Received Signal Strength for accurate localization.

Fuzzy logic offers an inexpensive and robust way to deal
with highly complex and variable models of noisy, uncertain
environments. It provides a mechanism to learn about an
environment in a way that treats variability consistently. In
one well-established fuzzy system, the Sendai railroad [11],
fuzzy logic allowed the integration of noisy data related to
rail conditions, train weight, and weather into acceleration
and braking algorithms. Fuzzy logic can similarly be applied
to localization. Empirical measurements are made between
participating anchors in predictable encounters. These
measurements are analyzed to produce rules that are used
by the fuzzy inference systems (FIS), which interpret RSS
input from unlocalized nodes and other anchors. The output
of this process recovers the actual distance, compensated for
variability in the local environment. This basic technique is
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Fig. 1. (a) lllustration of radio patterns for two different degrees of radio irregularity (Dol). (b) The effect of Dol on localization error in MSL, MCL, and
centroid. (c) The effect of anchor density on localization error, at Dol = 0.4, for MSL, MCL, and centroid.

employed in two constituent subsystems of FUZLOC—the
Fuzzy Multilateration System (FMS) and the Fuzzy Grid
Prediction System (FGPS). The contributions of this paper
are as follows:

e We formulate the mobile node localization problem
for noisy environments, as a fuzzy inference process.

e We present fuzzy multilateration, a component of
our fuzzy inference process, which obtains a node’s
location from noisy RSS measurements, using fuzzy
rule sets.

e We present a fuzzy grid prediction scheme, which
optimizes our fuzzy inference process, under condi-
tions of low anchor density.

e We demonstrate the feasibility of our proposed
technique, through an implementation using mote
hardware hosted on iRobot.

e We perform extensive simulations and compare our
solution with state-of-the-art algorithms, using both
real-world and synthetic data.

This paper is organized as follows: Section 2 motivates our
work. In Sections 3 and 4, we present our fuzzy logic-based
node localization framework, and the node localization
system design, respectively. We evaluate the performance
of our proposed node localization system in Section 5,
including a real hardware implementation. We review
related work in Section 6 and conclude in Section 7. The
Supplemental Material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2012.82, contains a detailed explanation
of the fuzzification process, a numerical example for fuzzy
multilateration, examples of fuzzy rule sets and an experi-
ment showing the effect of Monte Carlo sample size on
localization accuracy.

2 MOTIVATION

This paper is motivated by our interest in a localization
technique for a mobile sensor network, deployed in a harsh
environment and a set of interesting/surprising results
obtained from simulations of two state-of-the-art localiza-
tion techniques for mobile sensor networks, namely MCL
[12] and MSL [13]. We define a harsh environment as one
in which the distance between sender and receiver cannot
be accurately determined from the RSS alone, due to

environmental phenomena such as multipath propagation
and interference.

For more complete problem formulation, we mention that
the aforementioned localization techniques assume that
given a set of mobile sensor nodes, a subset of nodes, called
anchors, know their location in a 2D plane. Also, nodes and
anchors move randomly in the deployment area. Maximum
velocity of a node is bounded but the actual velocity is
unknown to nodes or anchors. Nodes do not have any
knowledge of the mobility model. Anchors periodically
broadcast their locations. All nodes are deployed in a noisy,
harsh environment and they do not have any additional
sensors except their radios. MCL gathers samples using
Monte Carlo methods and filters them using a particle filter,
with the criteria being that each sample should be within
range of a 1 hop anchor (with respect to itself) while at the
same time, not being in range of a 2-hop anchor. Samples
are assigned weights over successive iterations. MSL
improves upon MCL by using criteria involving all
neighbors and not just anchors. MSL is also adaptable to
static scenarios if the nodes are allowed to exchange their
samples and weights.

Using simulators developed by the authors of [12], [13],
we developed a scenario with highly irregular radio ranges,
typical of harsh indoor or extremely obstructed outdoor
environments. The irregularity in the radio range is
modeled in these simulators as a degree of irregularity
(Dol) parameter [12]. The Dol represents the maximum
radio range variation per unit degree change in direction.
An example, depicted in Fig. 1a, when Dol = 0.4 the actual
communication range is randomly chosen from [0.6r, 1.4r].

Simulation results, for a network of 320 nodes, 32 anchors
deployed in a 500 x 500 grid and moving at 0.2r (r, the
radio range) are shown in Figs. 1b and 1c. Fig. 1b
demonstrates that the Dol parameter has a significant
negative effect on the localization accuracy. At Dol =0,
MCL and MSL achieve localization errors of 0.2r and 0.5r.
With an increase in the Dol to 0.4, their localization error
increases 400 percent. More surprisingly, as depicted in
Fig. 1c, at a high Dol value, an increase in the number of
anchors has a detrimental effect on localization accuracy.
This result is counterintuitive since access to more anchors
implies that nodes have more opportunities to receive
accurate location information, as exemplified by the
performance of Centroid (which computes the location as
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the average of the coordinates of all anchors in its vicinity),
in the same figure. A similar observation is made in [7]
although no further study was performed. Our results and
also those of [14], [15] suggest that large errors are
detrimental to the Monte Carlo method since the samples
get successively polluted with time. In [15], a proposed
Mixture-MCL method uses odometry to gather samples
and then uses sensor data to assign weights, enabling it to
recover quickly from such errors, while [14] does the same
based on error correction based on learned paths and
topological constraints. In the specific case of MCL, the
nodes used for filtering the samples may not be actual
neighbors because of the nonuniformity in the radio range
varies in every direction. The number of polluted samples
increases with increasing anchor density. Simply increasing
the size of the particle filter in MCL (to 1,000 from the
current value of 50) does not improve the accuracy
significantly, as can be seen in [12, Fig. 10].

3 A Fuzzy Loagic-BASED NODE LOCALIZATION
FRAMEWORK

The challenges identified above were partially addressed in
recent work in sensor network node localization [16], [17].
The authors create hybrid localization mechanisms that
make use of range-based localization primitives (e.g., RSSI) to
validate and improve the accuracy of range-free techniques.

In a similar vein, we propose to formulate the localiza-
tion problem as a fuzzy inference problem by using RSSI to
obtain distance, in a fuzzy logic-based localization system
where the concept of distance is very loose, such as “High,”
“Medium,” or “Low.” The core intuition is that accurate
ranges can be determined by learning about the local RF
environment and developing rules based on this knowl-
edge. Fuzzy logic provides a simple and computationally
inexpensive way to accomplish this learning. In other,
similarly dynamic scenarios like rail transportation [11] and
photovoltaic power generation [18], fuzzy logic provides
mechanisms that allow simple systems to smartly adapt to
rapidly changing environments.

In our proposed fuzzy logic-based localization system,
distances between a mobile sensor node and anchor nodes
are fuzzified, and used, subsequently in a Fuzzy Multi-
lateration procedure to obtain a fuzzy location. In case two
or more anchors are not available for performing localiza-
tion using fuzzy multilateration, the sensor node employs a
new technique, called fuzzy grid prediction, to obtain a
location, albeit imprecise. In the Fuzzy Grid Prediction
method, the node uses ranging information from any
available anchor to compute distances to several fictitious
“virtual anchors” which are assumed to be located in
predetermined grids or quadrants. This allows the node to
locate the grid/quadrant in which it is present.

In conventional localization schemes, the location of a
node is typically represented by two coordinates that
uniquely identify a single point within some 2D area.
Localization using fuzzy coordinates follows a similar
convention. The 2D location of a node is represented as a
pair (X,Y), where both X and Y are fuzzy numbers and
explained below. However, instead of a single point, the
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Fig. 2. (a) Representation of a fuzzy location, using two triangular
membership functions and (b) a sensor node S with fuzzy coordinates X
and Y, to be located using three anchors at (x1,v1), (22, ¥2), and (3, y3).

fuzzy location represents an area where the probability of
finding the node is the highest, as depicted in Fig. 2a. This
section develops the theoretical foundation behind the
computation of this fuzzy location, using imprecise and
noisy RSSI measurements.

3.1 Background

Fuzzy logic revisits classical set theory and modifies it to have
nonrigid, or fuzzy, set boundaries. Where classical set theory
is concerned with collections of discrete objects, a fuzzy set,
sometimes called a fuzzy bin, is defined by an associated
membership function p, which describes the degree of member-
ship 0 < p(z) < 1 of acrisp (regular) number x in the fuzzy set.
The process of calculating the membership of a crisp number
for many fuzzy sets is called the fuzzification process.

A fuzzy number is a special fuzzy bin where the
membership is 1 at one and only one point. A fuzzy
number represents a multivalued, imprecise quantity unlike
a single-valued traditional number. One popular p(z)
function, is the triangular membership function

0 ifr<a
r—a)/(b—a) fa<z<b

wa) = ((c—xgjgc—b)) ifbgw;c @)
0 ifz>e,

where (a,b,c) defines a triangular bin. In this paper, we
chose a triangular membership function because, in addi-
tion to being a good substitute for the more widely used
Gaussian function, it has linear components only and
computing membership is less resource intensive, suitable
for our resource constrained sensor nodes. Since not all
triangular memberships are symmetric, we use the trian-
gular function in its most general form. A comprehensive
example can be found in Supplemental Material, available
online, Section 1.

A fuzzy system translates a crisp input into a fuzzy output
using a set of fuzzy rules which relate input and output
variables in the form of an IF-THEN clause. Typically, the IF
clause contains the input linguistic variable (e.g., RSSI) and
the THEN clause contains the output linguistic variable
(e.g., DISTANCE). An example rule is

IF RSSI is WEAK THEN DISTANCE is LARGE

3.2 Fuzzy Multilateration

As shown in Fig. 2b, consider a node S that wants to be
localized, in the vicinity of three anchor nodes 4; (j = 1,3).
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Fig. 3. The fuzzy inference process for an input RSSI value of —62 dBm.
In this example, the fuzzy rule base maps this value through two rules:
“Rule i” and “Rule j.” The dotted lines represent fuzzy inference: finding
the membership (vertical line on left), applying the same membership to
the output bin (horizontal line toward right) and defuzzification (the lines
intersect the triangles to form a trapezoid).

Each anchor node is equipped with a set of fuzzy rules that
map fuzzy RSSI values to fuzzy distance values:

Rule i: IF RSSI is RSS1; THEN DIST is Dist;

where RSSI; and Dist; are fuzzy linguistic variables (e.g.,
WEAK, MEDIUM, HIGH).

A fuzzy rule is created when two anchors can commu-
nicate directly. Since anchors know their locations, they can
find the distance between themselves and also measure the
RSSI. The anchors then fuzzify the crisp RSSI and distance
values into two fuzzy bins RSSI; and Dist; respectively,
through the process of fuzzification. The chosen fuzzy bin is
the one in which the crisp value will have the highest
membership value.

For a more general case, when the node S is within
radio range of n anchors, the node localization problem can
be formulated as a fuzzy multilateration problem. The
following;:

F=X-z)"+ -y)-D}=0
(2)

Fo=(X—2,)+ (Y —y,)*=D>=0

defines a nonlinear system of equations describing the
relation between the locations of the nodes and anchors and
the distances among them. The variables X, Y, and Dj
(k = 1, n) are fuzzy numbers representing the location of the
node and the distance to anchors, respectively, while
(zr,yx) (k=1,n) are crisp numbers representing the crisp
location of the anchors. The objective is to minimize the
mean square error over all equations.

3.2.1 Fuzzy Inference

A definition of the process of obtaining the fuzzy distance
D, between node and anchor is needed before solving the
system of equations. This process, called fuzzy inference,
transforms a crisp RSSI value obtained from a packet sent
by a node and received by an anchor into a fuzzy number
Dy.. Fig. 3 depicts an example for the fuzzy inference
process. As shown, an RSSI value of —62 dBm has different
membership values p(RSSI) for the fuzzy bins WEAK and
MEDIUM. The two fuzzy bins, in this example, are
mapped by a fuzzy rule base formed by two fuzzy rules:

Rule i: IF RSSI is M EDIUM THEN DIST is MEDIUM
Rule j: IF RSSI is WEAK THEN DIST is LARGE

These two fuzzy rules define the mapping from the RSSI
fuzzy sets to the DIST fuzzy sets. As shown in Fig. 3, the
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Fig. 4. lllustrating the multihop case for fuzzy multilateration: A node S
localizes itself using A, and A;.

two fuzzy rules indicate the membership p(DIST) in the
DIST domain. P; and P; indicate the center of gravity of the
trapezoid formed by the mapping of the RSSI into fuzzy
bins MEDIUM and LARGE, respectively.

Typically, a single RSSI value triggers multiple fuzzy
rules (the membership value of the crisp value in the input
bin of the fuzzy rule is nonzero), resulting in multiple
distance bins. Assume that the fuzzy rule base maps an
RSSI value to a set of m fuzzy Dist bins. The set of centers of
gravity P, (I =1,m) is denoted by P = {P,P»... P,}. The
output fuzzy number D; is calculated as follows: First,
calculate the centroid of all points in P—call it P.. Next, take
the centroid of all points in P whose abscissa is less than
that of P, ie, L=|{P,|z(P,) <z(P.)}. Similarly, G =
{P,|z(P,) > z(P.)} is the set of points whose abscissa is
greater than that of P. The abscissae of three points P, L,
and G represent the resulting fuzzy distance Dy, formally
described as (subscript « denotes abscissa):

o - (BE) 0. (32))

This definition of obtaining a fuzzy number through fuzzy
inference produces a fuzzy number while giving more
“weight” to the centroid by eliminating some possibilities
at the edge. To truly represent the result one would need to
compute a smooth and continuous function like the Gaussian
membership function, but the triangular approximation has
the advantage of reduced computation complexity.

Equation (3) limits its analysis to situations where the
anchors and the node desiring localization are one hop from
each other. This constraint limits the degree of accuracy that
can be achieved. Two hops provide a good tradeoff between
messaging overheads and accuracy as explained later.
Consider an anchor A, (Fig. 4) which is 2 hops away from
anode S. Suppose that a regular node S; and an anchor 4,
are neighbors of both S and A,. The aim is now to find the
distance Dgy,. In a 2D space, a straight line between two
points is also the shortest possible; hence, a good approx-
imation is the minimum of all known distances between the
two points. Applying this fact, we can now calculate

Dgsa, = min(Dgs, + Ds, 4,, Dsa, + Da,a,)- (4)

The distances in (4) are fuzzy values, as the result of
defuzzification by either A; or A, depending on the sender.
Addition of two triangular fuzzy numbers (a,b,c) and
(d,e, f) is well known in fuzzy logic theory [19] to be the
sum of their individual parameters

(a,b,c) + (d,e, f) = (a+d,b+e,c+ f).

The smallest fuzzy number, to be computed in (4) is
simply the fuzzy number with the lowest center value [19]:
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(a,b,¢)

mM@@d@am:{@aﬁimm&@:b

if min(b,e) =e.

The minimum of many fuzzy numbers can be recursively
computed in the case of multihop multilateration; it is
beyond the scope of this paper. In order to solve the
nonlinear system of (2), in two fuzzy variables, the fuzzy
variant of the iterative classical Newton method based on
the Jacobian matrix [20] is used. To accomplish this, the
fuzzy numbers are expressed in their parametric form X =
(X,X) where X and X are continuous bounded nonde-
creasing and nonincreasing, respectively, functions. These
functions effectively represent the “left half” and “right
half” of the membership function.

For a triangular membership function, such as defined in
(1), a parametric representation in r € [0,1] is

X=(a+(b—a)r,c—(c—Db)r).

The system of (2) is, therefore, represented in the
parametric form. Without loss of generality, assume that
X and Y are positive. Then, the system can be split into

= (X —2) + (¥ - ) - Di*=0
()
&: (X*xn)Q‘F(X*yn)Q*&Q =0
and
R — - =2
F=X-21)+ -y)"~Dy =0
(6)
Al .72 2 V4 2 2
Ez - (X_mn) +(Y_yn) _Dn =0
The Jacobian J is constructed as
ﬂﬁ ﬁ} ﬂx ﬁ?
Fix Ry Fy Fy
J=1 ... .. S (7)
&X &Y &X &7
Fx Fox Fy Fy
2X-z) 0 2¥Y—y)) 0
0 2(X—IL‘1) 0 Z(Y—yl)
J= . e . -
2(X —zn) 0 2(Y = ya) 0
0 2(X — z,) 0 2(Y — )

Initial guesses of X and Y can be updated as follows: For
every iteration, compute a matrix A:

A = [h(r) h(r) k(r) K(r)]", (8)

where h, h, k, and k are defined as incremental updates to
the initial guess

X(r) = X(r) + h(r)
X(r) = X(r) + h(r) (©)
Y(r) = Y(r) + k(r)
Y(r) =Y(r) +E(r).

The set of equations evaluated at the initial guess is
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Fig. 5. (a) A sensor S and the grid cells in its vicinity is within radio range
of anchor A3 and (b) average distance between sensor S and virtual
anchor VA;.

F=[|RF ... F, F]". (10)

The equation that connects them is A= —J 'F. The
initial guess (Xy,Y)) is computed from the average of the
coordinates of the anchors. Then, J and F' are computed for
this initial guess. The incremental update A is calculated
and applied to X and Y. J and F are computed for the new
values and the process is repeated until A converges to 0
within e.

3.3 Fuzzy Grid Prediction

The multilateration technique presented in the previous
section assumes the presence of a sufficient number of
anchors, typically three or more. However, in mobile sensor
networks with low anchor densities, it might frequently be
the case that a node does not have enough anchors for
multilateration. To address this problem, we extend our
fuzzy logic-based localization framework to predict an area,
e.g., a cell in a grid, where the node might be. The idea is
inspired from cellular systems [21]. We propose to
virtualize the anchors, so that a node is within a set of
Virtual Anchors at any point in time. A Virtual Anchor is a
fictitious anchor which is assumed to be located at a known,
fixed location in the field of deployment, the distance to
which can be found in an approximate way from the node.
In FUZLOC, we place virtual anchors at the center of every
square cell that the field is divided into, as described below.
The key idea is that the nearer a node is to a virtual anchor,
the more likely it is that the node can be found in that cell.

Consider the area in which the network is deployed to be
subdivided into a grid of G cells, as depicted in Fig. 5a.
Denote the probability that a node S is in a cell j (j =
1...G) by p;. To infer these probabilities, we construct a
fuzzy system, whose input is the distance d; between S and
the center of cell j, and the output is a scalar 0 < p; < 1 for
each j. A rule in our fuzzy system is as follows:

Rule i: IF (DISTyy is D;1) and ... and (DISTyq¢ is Dig)

THEN (PROBy,q is P;) and ... and (PROByc is Pig)
where D;; is the fuzzy bin representing the distance between
the node and the center of cell j, and P; is the fuzzy bin
representing the probability that node S is in cell j.

For each rule i, we calculate p; by first fuzzifying d;,
applying it to the rule, and then defuzzifying the aggregate,
as we described in Section 3.2.1. Once the most probable cell
is found, the location of the node can be computed as the
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intersection between this cell and a circle with a radius of r
around the anchor.

It is paramount to remark that we can obtain p; only if
the node S has at least one anchor in its vicinity, i.e., we can
estimate D;;. The technique we propose for estimating D;; is
described in Section 3.3.1.

Before proceeding with the description of how we
compute D;;, we describe how to update p; when no anchor
is in the vicinity of node S. Since there is a high correlation
between the current and previous cell a node is in, we
construct a Recursive Least Squares (RLS) filter which
predicts the cell in which the node S might be. For each cell
j, we store a buffer x;(k) = [p;(k) pj(k—1) ... p;j(k—m)]"
of m previous samples. We then define an RLS filter,
updated whenever a new sample p(k + 1) is available, as

wy (k) (k),

where w;(k) = w;(k— 1)+ a;(k)g;(k) is a vector of coeffi-
cients, computed as follows:

5
—
T
N
H

wj(k) — wj (k — 1)z;(k)
9i(k) = Pj(k — a;(kR){A + ] (k) Py(k — )] (k)}
Pi(k) = X' Pi(k = 1) = gj(k)a] (k)A " Py(k — 1),

where 0 < A <1 is the forgetfulness factor, a design para-
meter. P;(0) is initialized to 61, where I is the identity matrix
of size (m + 1) x (m + 1) and ¢ is typically a large value.

3.3.1 Calculation of D;;

The fuzzy system requires that we calculate the distance
from the node to the virtual anchor. We have to find the
average distance instead, because we do not know the
node’s location. These average distances can be calculated
only when at least one anchor is in the node’s vicinity.

Consider a node and a sole anchor A; which is its
neighbor, as illustrated in Fig. 5b. Take the set of all virtual
anchors and discard the ones which are at a distance of
more than 2R from the anchor where R is the radio range of
the anchor, since this is the most distant virtual anchor the
node can hear in the limiting case where the node is
between the anchor and the virtual anchor. To calculate the
average distance D from the node to a virtual anchor V' 4; in
cell j, we estimate the average distance from V' A; to all
points on the circumference of a hypothetical circle around
As. The radius r of this circle is the defuzzified distance
obtained from the fuzzy multilateration system. If the
distance between A3 and V' A; is R, the average distance D
can be calculated as follows:

- 1 27
:2_/ \/(R — 7 cos0)® + (r sinf)? d
T™Jo

(R—r1)

—4Rr (11)

(R—r)?

7

)
™

where E[z|m] is the incomplete elliptic integral of the
second kind [22].

This distance D to a virtual anchor in cell k for node S is
nothing but d;. When calculated for all j, it becomes the
input to the fuzzy system. The output will be a set of
probabilities p; pertaining to each cell. The center of gravity
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Fig. 6. The fuzzy logic-based localization system design with the
(a) training and (b) localization phases.

of the lamina defined by the intersection of a circle around
the anchor of radius r with the most likely cell is calculated,
as explained above. Thus, a location is obtained.

A numerical example for fuzzy multilateration can be
found in Section 2 of the supplemental material, available
online.

4 LoCALIZATION SYSTEM DESIGN

The node localization system (called FUZLOC) that imple-
ments the proposed fuzzy logic-based localization frame-
work is depicted in Fig. 6. As shown, the localization system
runs on both anchor and sensor nodes. The pseudocode for
the localization protocol, as executed by anchors and sensor
nodes, is shown in Algorithms 1 and 2, respectively.

Algorithm 1. FUZLOC Protocol - Anchors
1: [V A] « FGPS.getVirtual Anchors
2: BroadcastHello(VA)
3: procedure RECVHELLO

> VA of self

4: rss < Radio.getRSS()
5: loc «— Message.parseLocation() > Loc of sender
6: dist < Distance to sender
7: EMS.train(rss, dist)
8: [V A] « Message.parseVA() > VA of sender
9: [dist] <« Calculate distances to virtual anchors

10: [prob] < Calculate probabilities

11: FGPS.train(dist, prob)

12: end procedure
13: procedure RECVHELP2
14: Check for cache

> Intermediary anchor

15: rss < Radio.getRSS()

16: [ReplyM sg] < BroadcastHelp1() > Rebroadcast
17: dist «+ FMS.getDist(rss)

18: [V A] — FGPS.getVirtual Anchors

19: [V A.dist] — FPGS.getDists(VA)

20: [V A.prob] < FPGS.defuzzify(VA.dist)
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21: Radio.reply(VA.prob,dist,ReplyMsg)
22: Cache result
23: end procedure

24: procedure RECEIVEHELP1(rssl) > 2 hop anchor

25: rss2 «— Radio.getRSS()
26: distl «— FMS.getDist(rss1)
27: dist2 <« FMS.getDist(rss2)

28: Radio.reply(dist1,dist2)
29: end procedure

Algorithm 2. FUZLOC Protocol - Nodes

1: procedure LOCALIZE
2:  [info] « BroadcastHelp2() > 2 hop HELP
3 anchors «— Count(info)
4:  if anchors = 0 then
5: [prob] « Filter.predict()
6: grid «— Max(prob).index
7 loc «— center(grid)
8 else if anchors =1 then > FGPS
9: [prob] « info[0].parseVAProb()
10: TrainFilter(prob)
11: grid «— Max(prob).index
12: dist, center «— info[0].parseAnchorLoc()
13: circle «— ConstructCircle(dist, center)
14: loc « Solvelntersection(grid,circle)
15: else > FMS
16: [dists] — info.parseDistances()
17: [centers] « info.parseLocations()
18: loc «— solveFMS(dists,centers)
19: end if

20: end procedure

21: procedure RECEIVEHELP2 > Intermediary Node

22: Check for cache

23: rss < Radio.getRSS()

24: [ReplyM sg] < BroadcastHelp1(rss) > Rebroadcast
25: Radio.reply(ReplyMsg)

26: Cache result

27: end procedure

28: procedure RECEIVEHELP1
29: return

30: end procedure

> Only for anchors

Fig. 6a depicts the training phase of Fuzloc while Fig. 6b,
the localization phase. Training happens with the participa-
tion of anchors only, while the localization phase involves
both anchors and nodes. The components required for the
fuzzy multilateration subsystem, as well as the fuzzy grid
prediction subsystem are implemented on both anchors and
nodes. The fuzzy rules required for these subsystems are
created during the training phase. Anchors are assumed to
have more computing power than ordinary nodes; they can
then maintain these fuzzy rules.

The FUZLOC localization system uses two types of
messages—a HELLO-type message which anchors use to
train the localization system (i.e., anchors broadcast their
location and build rules), and a HELP-type message which
nodes use for localization (i.e., nodes notify 1-hop and 2-hop
anchors and nodes that they need to localize).

The remaining part of this section describes the
localization system training (and its use of HELLO
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messages) and the localization protocol execution (and its
use of HELP-type messages).

4.1 Localization System Training
The training of the localization system takes place every
time two anchors come within communication range with
each other. The anchors know their locations, hence, an
anchor can compute the distance between it and the other
anchor. The key observation here is that since an anchor can
also measure the RSSI of an incoming message, it can build
the fuzzy rules required for both FMS and FGPS. Fig. 6a
depicts the training phase where a single HELLO message is
used to the build the rule sets for both FMS and FGPS.
FMS—Training. Anchors exchange HELLO messages
(Algorithm 1, step 2). As shown in Fig. 6a, the RSS of an
incoming HELLO message (“Input RSS”) is fuzzified by
choosing the fuzzy set with the highest membership
w(RSST) (Fig. 6a, Path 1). The distance between anchors
(“Input Dist”) is fuzzified into a distance fuzzy set (Fig. 6a,
Path 2). The result of the training populates the rule base,
i.e., “RSS-Dist Rules” (Fig. 6a, and Algorithm 1, step 7).
FGPS—Training. When an anchor receives a HELLO
message, it calculates the distances between the sender and
each virtual anchor, using (14) (Path 3). This calculation is
shown in Algorithm 1, step 9. These distances are then
fuzzified (“Distance Fuzzifier,” Path 3). Additionally, the
probabilities for the anchor being in each grid are updated,
as shown in Algorithm 1, step 10. The probabilities are
updated based on anchor’s real movement, as presented in
Section 3.3 (Fig. 6a, Path 4). The computed probabilities are
then fuzzified and used for populating (Algorithm 1, step
11) the rules set “Grid-Prob Rules” (Path 4).

4.2 Localization Protocol

The localization phase which runs on both anchors and
nodes is shown in Fig. 6b. In order to obtain its location, a
node sends a HELP2 message (Algorithm 2, step 2). A
HELP2 message is meant to trigger actions in nodes/
anchors which are 1-hop away. These nodes/anchors
perform some calculations (explained below), then re-
broadcast a HELP1 message, meant to trigger actions in
the 2-hop anchors.

When an anchor receives a HELP2 message (shown as
“Help Msg” in Fig. 6b), it uses the RSSI of the packet in two
ways. First, using (3), the anchor computes the fuzzy
distance (“FMS FIS”) between itself and the node (Algorithm
1,step 17) (Paths 1, 2, 3, 11). This sequence of steps represents
the anchor’s implementation of the FMS subsystem. These
fuzzy distances, from multiple anchors, are then used by the
node to compute its location using the nonlinear system of
equations (“Fuzzy Multilateration” box).

Second, the anchor defuzzifies the fuzzy distance (from
Path 4) into a crisp value by taking the center value of the
fuzzy bin (“Defuzzifier,” Path 4). This is needed since the
elliptic integral method can handle crisp values only. Based
on this crisp distance, the anchor calculates the distances
between the node sending the Help message and (Sec-
tion 3.3.1) its virtual anchors (step 19) using the incomplete
elliptic integral method (Fig. 6b, Paths 5, 6). This set of crisp
distances serves as the input (Section 3.3) to the FGPS FIS
(Algorithm 1, step 20) (Fig. 6b, Path 7). The FGPS FIS then
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computes a vector or grid probabilities using the Dist-Prob
rule set (Fig. 6b, Paths 7, 8) obtained using FGPS training.

This vector of probabilities is then defuzzified to a crisp
value (by defuzzifying the individual elements) and
compiled into the reply message to be sent back to the
node (Paths 10). In the reply to the HELP2 message, as
mentioned above, the anchor also includes the fuzzy
distance between it and the node (Fig. 6b, Path 11). A
vector containing the probabilities for the node being in
each of the grids (Algorithm 1, step 21) (Fig. 6b, Path 10),
which is essentially the output of FGPS FIS and the reply for
the HELP1 message that was broadcast.

The anchor then rebroadcasts a HELP1 message with an
empty body (Algorithm 1, step 16). When an anchor
receives a HELP1 message, it performs the same steps as
before: it defuzzifies the RSSI of the received packet into a
distance, and replies with the same (Algorithm 1, steps 25-
28). A 2-hop anchor does not invoke its FGPS FIS. In case
the HELP1 message contains an RSSI in the body (which
happens when the intermediary node is a nonanchor), both
the contained RSSI and the packet RSSI are defuzzified and
included in the reply.

Once a node receives response(s) to its HELP2 message,
it decides to compute or predict its location (Algorithm 2,
steps 4-18). If the node does not receive a response, it uses
the RLS filter to predict the most probable grid it is in
(Algorithm 2, steps 5-7). If the node receives a response
from one anchor, it computes the center of gravity of the
area obtained by intersection between: 1) the grid with
the maximum probability; and 2) the circle with a center at
the anchor location and with radius equal to the distance
between the anchor and the node (Algorithm 2, steps 9-14).
If the node receives two or more responses, it uses fuzzy
multilateration to iteratively compute its location (Algo-
rithm 2, steps 16-18).

A node can also be on the receiving end of a HELP2
message—when it is an intermediary node. In this case, the
node first detects the RSSI of the received message
(Algorithm 2, step 23) and then packages the RSSI into a
HELP1 message and broadcasts it (Algorithm 2, step 24).
Any response(s) to this message will be sent back to the
sender as a reply to the original HELP2 message that was
sent by the node intending to localize. A node ignores any
HELP1 message it receives, since it is meant only for anchors
(Algorithm 2, step 29).

5 PERFORMANCE EVALUATION

In this section, we first demonstrate that FUZLOC can be
implemented and run on real mote hardware, then show
FUZLOC’s superior performance, when compared with
state-of-the-art solutions like MCL [12], MSL [13], and
Centroid [23]. Owing to the relatively few number of robots,
the difficulty in implementing MCL and MSL on real
hardware (please note that neither MSL, nor MCL have
been implemented/evaluated on real hardware), control-
ling the anchor and seed density and the physical space
constraints, we decided to compare performance of FU-
ZLOC with state-of-the-art solutions, in simulations using
both empirical and synthetic data.

In the remaining part of this section, we present FUZLOC
implementation on real-hardware, describe the empirical
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Fig. 7. Experimental setup consisting of six iRobot creates equipped
with epic motes.

and synthetic RSSI-Distance mapping, and performance
evaluation results.

5.1 System Implementation Validation

We implemented FUZLOC/FMS on EPIC motes running
TinyOS 2.1.1. Since the matrices involved in FMS are not
always square and hence they cannot be simply inverted,
the fast and lightweight SVD-based pseudoinverse method
[22] was implemented on the motes. Relevant portions of
the GNU Scientific Library (GSL) were ported to the
MSP430 architecture in order to achieve this goal. The
result was a fast method of inverting matrices, providing
four digits of accuracy when compared to a similar
computation on a desktop PC. The 1,574 lines of code fit
comfortably in 18,726B.

A Fuzzy Inference System consisting of a triangular rule
set and a center-average defuzzification method was
implemented in 19,932B of ROM (including the code
required to send and receive messages in the radio) and
1,859B in RAM on EPIC motes running TinyOS 2.1.1.
Whenever a packet was received on the onboard radio, the
detected RSS was applied to the prebuilt rule set and then
defuzzified into a fuzzy distance. The distance and RSSI
binset consisted of eight bins each. The defuzzified distance
was equal to that produced by a similar computation on a
desktop computer, within rounding errors. The execution
time was less than 1 second. This proof-of-concept im-
plementation of FuzLoc on motes demonstrates its feasi-
bility of implementation on a mote.

5.2 Empirical and Synthetic RSSI-Distance Mapping

For our performance evaluation, we used RSSI-distance
mappings obtained from a static sensor network, a small
mobile sensor network and from a newly proposed Dol
model. They are as follows.

Static sensor network. We used a static 42 node indoor
testbed, in our lab. RSSI data were collected over 500 itera-
tions with each node beaconing in each iteration. Since the
nodes were static, internode distances could be calculated
easily. This data were used to train and evaluate the FIS, as
will be shown in Fig. 12b. However, since only a finite
number of unique distances are possible with a static
testbed, we decided to use a small mobile testbed as well.

Small mobile sensor network. We collected data (RSSI-
distance pairs) using a mobile testbed consisting of six
“iRobot Creates” and EPIC motes (which interfaced using
the serial bus) shown in Fig. 7. Over a 125-iteration run,
RSSI data were collected between pairs of neighbors at
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Fig. 8. (a) The Dol model with three points of interest: although A and B
are equally distant, their RSS values differ significantly in our EDol
model and (b) RSSI versus distance for the radio model used in the
simulator, at Dol = 0.4 and 0.

every iteration. In order to get the true locations of the
robots (for calculating the distances between them), a digital
video camera was used to film the entire experiment in
1,080p HD. A small program was written in C and used
OpenCV to infer the ground location of the robots using
planar homography, since the camera was not in the same
plane as the robots.

Each robot has a different color since this makes it easier
to track them in the recorded video. Capturing the radio
effects caused by mobility and the orientation of the
antennae on the motes in real time was the main motivation
behind the experiment. The ground locations of the robots at
each step are then used to infer the actual distance between
nodes for every measured RSS between nodes. These RSSI-
distance pairs were then used to train and evaluate the FIS
as will be shown in Fig. 12¢ and described below.

EDol model. Since our fuzzy logic-based localization
technique makes use of the RSSI, we extended the Dol model
[24]. In order to adjust the simulated RSSI for both the actual
radio range and log-normal fading, we developed the EDol
model. It combines the general log-normal fading model
with the Dol model [24]. In Fig. 8a, OA and OC are the radio
ranges for the antenna situated at the origin O, in two
different directions as evaluated by the Dol model. Assume
that the receiver sensitivity is —94 dBm, i.e., if a transmitter
with similar characteristics as the receiver is situated at A or
C, then the RSSI at the origin will be —94 dBm. To calculate
the RSSI at a point B in the same direction as C where
OA = 0B, we apply a lognormal fading model with
the reference distance as OC, such that the RSSI at point C
is —60 dBm. Note that the RSSI at A is —94 dBm, whereas
the RSSI at an equidistant point B in a different direction is
—60 dBm. On top of this, additive random noise (uniformly
distributed, min = —20 dB, max = 20 dB) is applied to the
calculated RSSI. This procedure is done every time a node
uses this model to simulate an RSSI, ensuring randomness in
both temporal and spatial randomness. Formally,

logyy d
log[r(1 + Dol x rand())]’

RSSI(d) = S; (12)
where S; is the receiver sensitivity, r is the ideal radio range,
Dol is the radio degree of irregularity, and rand is a random
number [0, 1].

5.3 Simulation Parameters

Through extensive simulations, we compare our solution
with MCL [12], MSL [13], and Centroid [23], since we
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wanted to evaluate our solution against noncentralized
solutions for nonstatic networks, both Monte Carlo based
(MCL, MSL) and simple (Centroid). A theoretical “Perfect
FUZLOC” method shows the theoretical optimum FUZLOC
can reach, by simply bypassing the FIS and considering the
actual distance between nodes. The problem of not having
enough anchors in the vicinity of nodes causes nonzero
error for Perfect FUZLOC. Data gathered from the static and
small mobile sensor network have been used to evaluate the
FIS system. Thus, the FIS system is evaluated using
simulated RSSI-Distance data as well as data from the two
experiments described before.

We simulate a set (N) of 320 sensor nodes deployed in a
500 x 500 area. Of the 320 nodes deployed, 32 nodes are
designated anchors (set S). The radio range (r) of a node is 50
and the default Dol is 0.4. We chose these simulation
parameters for consistency with results reported in [12],
[13]. The default receiver sensitivity (S5;) is —94 dBm, and a
plot depicting the predicted RSSI by our EDol model, is
shown in Fig. 8b. The default maximum node velocity is to
0.2r. This velocity has been reported in [12] to be optimal.
We investigate the performance of all solutions for node
velocities up to 0.5r. The node velocity is an important
parameter since MCL and MSL use it as a filtering criterion
in their particle filters. The default setup uses 10 fuzzy
triangular bins and the defuzzification method is center
average. The fuzzy location is defuzzified into a crisp
location by considering only the center values of the abscissa
and the ordinate. The fuzzy bins for distance and RSSI are
uniformly distributed between (0, r) and (—40, —100)
respectively, with the width of each bin being twice the
separation between peaks of two adjacent fuzzy bins. With
10 distance and RSS bins, there are 100 different combina-
tions that can be seen in a RSS-Dist rule set. Rules
encountered more frequently tend to affect the output more
than infrequent ones because the defuzzification method
involves centroids corresponding to the output bin of each
rule. A sample set of fuzzy RSS-Dist rules has been provided
in the Supplemental Material, available online, Section 3.

5.4 Radio Irregularity

We performed simulations for different Dol values with all
other parameters kept constant. Fig. 9 depicts our results,
indicating the deterioration in localization accuracy of MCL,
MSL, and Centroid. The effect of compounded errors due to
polluted samples has been investigated as the “kidnapped
robot problem” [14] in robot localization. The kidnapped
robot test verifies whether the localization algorithm is able
to recover from localization failures, as signified by the
sudden change in location due to “kidnapping.” It has been
shown [14] that such uncorrected algorithms collapse when
the observed sample is far from the estimated sample. MSL
demonstrates an even more pronounced effect, since it also
uses nonanchor neighbors for filtering, thus leading to more
pollution. Both FuzLoc and Perfect FuzLoc are unaffected by
Dol, with the error of FuzLoc increasing by about 20 percent
at maximum Dol compared to MCL’s 300 percent.

5.5 Maximum Node Velocity

We investigate the effect of maximum node velocity on
localization accuracy, for velocities up to 0.5r, a reasonably
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Fig. 9. The effect of Dol on localization accuracy (N = 320,S = 32,
v =0.2r).

fast moving speed. The performance results are depicted in
Fig. 10a. MCL and MSL assume that nodes know their
maximum velocity. Hence, they use the velocity as a
filtering condition, which improves their performance.
Moreover, high velocity means having more anchors to
filter against, leading to the freshening of samples at every
instance. Fig. 10a shows that MCL and MSL decrease their
localization error from 1.4r to 09r, and 1.9r to 1.4r,
respectively. Since Centroid and FUZLOC do not use the
velocity, their performance is not expected to improve.
Fig. 10a indicates that their performance is not deteriorating.

5.6 Anchor Density

Anchor density is a critical parameter for anchor-based
localization schemes. Fig. 10b displays the impact of anchor
density on the localization schemes where the number of
anchors varies from 10 (32 anchors) to 50 percent
(160 anchors), and the Dol is constant at 0.4. The accuracy
of MCL and MSL deteriorates because an increase in anchor
density is associated with an increase in the number of
polluting sources. The mismatch of observed and actual
radio ranges causes spurious anchors to appear as node’s
direct and indirect seeds. MSL considers nonanchor
neighbors; hence, it experiences higher pollution. Centroid
performs better with increasing anchor density, as expected.
FUZLOC also has a decrease in localization error, with a
larger number of anchors. We observe that FUZLOC is not
significantly affected by Dol and ranging errors.

5.7 Node Density

For this performance evaluation scenario, we maintained
the percentage of anchors fixed at 10 percent. As shown in
Fig. 10c, the evaluated algorithms either suffer or are
unaffected. None of the localization algorithms benefits
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Fig. 11. The effect of the number of fuzzy bins on localization accuracy
(N =320, S =32, v = 0.2r, Dol = 0.4).

from an increase in the node density. As shown, Centroid
and FUZLOC are not substantially affected, except by the
inherent randomness in simulation. MCL considers indirect
seeds for sampling; hence, a high node density means more
anchors are misreported as indirect seeds. MSL considers
nonanchor neighbors; hence, at high node densities, it
experiences a huge amount of sample pollution. While
nonanchor neighbors help MSL to improve accuracy at low
Dol, they become harmful at higher Dol values.

5.8 Number of Bins

The number of bins in the fuzzy system is a design
parameter—the greater the number of bins, the higher the
accuracy of the system. Our evaluation of the influence of
the number of bins is depicted in Fig. 11. As shown, as the
number of bins increases, the localization error of FUZLOC
decreases. This is because, more and more RSSs find a bin
with high membership. The change in the number of bins is
expected to not affect MCL, MSL, Centroid, or even Perfect
FuzLoc. Fig. 11 shows that the aforementioned schemes
remain invariant whereas FUZLOC experiences decreasing
error with an increase in the number of bins.

5.9 Fuzzy Inference System Performance

Fig. 12a shows the performance of the FIS engine evaluated
using RSSI-distance data generated by the EDol model,
while Fig. 12b shows the same using data from our static
testbed and finally, Fig. 12c shows data from the small
mobile testbed. Input distance is on the X-axis while the
Y-axis marks the center value of the defuzzified output
distance. After training the system with 30 random RSS-
Distance pairs, RSS values deduced from distances were fed
into the system so that a distance could be inferred. The
straight line shows the ideal case. In order to quantify the
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accuracy, the root-mean-squared (RMS) error was calcu-
lated and normalized to the radio range. The values are
remarkably similar: for the EDol data set, it was 0.156; for
the static network data set, it was 0.182; and for the small
mobile testbed, it was 0.166. In a way, these numbers
reinforce the equivalence of the simulated and real indoor
static/mobile radio models, while proving the effectiveness
of the EDol model.

5.10 Overhead

A typical FIS does not require much storage capacity. If
there were eight bins, for example, a single byte could
represent a bin. Hence, each FMS rule requires just 2B of
storage. Typically, an anchor creates approximately 30 rules
during the period of deployment which translates to 60B of
storage. The FGPS FIS however, requires 50B for each rule
(25 bins in the input, 25 in the output). Note that regular
nodes do not store rules, only the anchors store rules.
Moreover, due to the nature of the triangular bin shapes,
simple calculations are required in order to fuzzify and
defuzzify. The only caveat is the inversion of matrices that
is required. As for the filter, the node does not construct a
filter for all possible cells, since it usually visits a maximum
of four cells per iteration. Hence, the storage required by a
three-order filter on each nonanchor node will be (288 x
4 x 4 x 3) = 13,824B. MCL requires at least 50 samples for
low localization error. Each sample requires a weight.
Centroid does not store any history and thus has the
smallest storage requirement. Amorphous stores announce-
ments made by the anchors which are flooded throughout
the network. If there are 320 nodes, 32 of which are anchors,
MCL requires each node to store 50 samples. Each sample
has an abscissa and an ordinate, each of at least 4B. Hence,
MCL requires around (50 x 4 x 2 x 320) = 128,000B. Fuzzy
on the other hand requires around 1,500B for FGPS and
around 60 for FMS, with 13,824B for the filters, which sums
up to (1,560 x 32+ 13,824) = 63,744B which is roughly
50 percent of the storage MCL requires, and even less than
what MSL requires, since MSL mains closeness values.
The communication overhead for 2-hop anchor discov-
ery is the same as that of MCL, and less that of MSL (since
MSL needs to exchange samples in addition to anchor
discovery). When FuzlLoc uses only 1-hop anchors, the
communication overhead required is significantly lower
since all that is needed is a simple broadcast. Still, FuzLoc
performs better than MCL as can be seen in [25]. Therefore,
systems desiring lesser communication overhead should

use anchors within 1 hop only, while those desiring higher
accuracy need to consider anchors within 2 hops. In no state
will the communication overhead required by FuzLoc
exceed that of MCL or MSL.

5.11 Single Hop and Dual Hop FMS

Fig. 13 compares the 1-hop and 2-hop variants of FUZLOC.
Being a multilateration-based method, the presence of a
sufficient number of anchors in a node’s vicinity is crucial to
reducing the error in location estimation. A simple way to
ensure this is to increase the percentage of anchors in the
network. However, the addition of anchors may be cost
prohibitive. A simpler way and less costly solution is to
consider anchors which are two hops away. The additional
cost incurred for this solution is higher messaging over-
head. Instead of traveling over a single hop, localization
request broadcasts must take two hops to reach the outer
anchors. Replies are consolidated, so no additional messa-
ging is incurred in the reply phase. The number of
additional transmissions required vary based on node and
anchor density. Fig. 13 shows that merely considering the 2-
hop anchors results in a much lower error due to the
increased number of anchors, than introducing more
anchors, across all Dols. Note that although the number of
messages increases, the error is more than halved.

6 RELATED WORK

Range-based localization methods require an estimate of the
distance or angle between two nodes to localize and may
operate in both absolute and relative coordinate systems.
Methods requiring specialized hardware include precise
measurement of acoustic phase difference [26], optical
sensors/reflectors [27]. Typical drawbacks for these methods

0.9
1hop, 20% ---#----
2hop, 20%

1hop, 15% —+—
2hop, 15%

0.8

0.7

0.6

Error (1)

0.5

0.4

0.3

0.2

0 0.2 0.4 0.6
Dol

0.8

Fig. 13. Comparison of 1 and 2 hop FUZLOC variants at seed densities
of 15 percent (S = 48) and 20 percent (S = 64) in a 320 node (N) network
across multiple Dols.
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include higher computational loads, increased node size,
higher energy consumption, and increased cost. A lighter
weight solution uses fuzzy logic to locate cellular phones in a
hexagonal grid in a cellular network [28]. It assumes a fixed
number of anchors but handles mobility very well. The
computation and refining are not suitable for a resource-
constrained computation platform like a MicaZ node. This
was the inspiration for this work.

Dharne et al. [29] used precise infrared ranging in
combination with a grid-based fuzzy logic approach.
Chiang and Wang [30] proposed using RSS-Distance fuzzy
rules to perform crisp localization, when there are anchors
placed at the four corners of the deployment area. In [31],
time-of-arrival and RSS data are fused together using
Bayesian inference, following which fuzzy optimization is
used to compute a crisp location. Compared to the above
three works, FuzLoc does not assume the presence of
additional sensing capabilities [29], [31] and provides
localization solutions when there are less than three anchors
[30] as well as computing the location as an area, a feature
not found in previous work.

Range-free localization methods are typically used in
systems where connectivity is the metric of choice and
actual geographic distance is less important. Hop counting
is a technique frequently used in these scenarios, where the
distance between two nodes is inferred from the number of
hops a packet takes and is based on some assumed or
measured average hop length [32]. A major drawback is
that it fails in networks with irregular topologies such as
those with a concave shape [33]. Mobility incurs large
overhead since all hop counts must be refreshed frequently.

Paschalidis et al. [34] used hypothesis testing to infer the
location of a node, by using RSS PDF distributions gathered
by anchors nodes through surveying. The fundamental
difference between fuzzy logic and hypothesis testing is
that while the former gathers learned intelligence and
applies it to a given input, the latter tests all possibilities
using tools like the Generalized Likelihood Ratio Test
(GLRT). In [34], building each PDF by surveying requires a
large sample space. The computation involved in building
the PDFs and performing the tests is not suitable for
embedded devices unlike FuzLoc. The complexity asso-
ciated with hypothesis testing increases with increasing
number of anchors as well as the deployment area, since
there are more tests to be conducted (with multiple tests,
the accepted hypothesis from the previous test is used in the
next test). With fuzzy logic, the number of rules increases
with the anchor density but is independent of deployment
area. Fuzzy rules require only storage while hypothesis
testing requires computation and storage.

This paper extends previous work done on FUZLOC [25].
Major changes include system implementation on Epic
motes, FIS evaluation using mobile iRobots, a distributed
protocol, system integration, and most importantly, evalua-
tion of and support for fuzzy multilateration using multi-
hop anchors.

7 CONCLUSIONS

We have proposed FUZLOC, a fuzzy logic-based localiza-
tion method suitable for wireless sensor nodes that are
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mobile in noisy, harsh environments. The constituent
systems use fuzzy multilateration and a grid predictor to
compute the location of a node as an area. The RSS is cast
into bins which encode the imprecision; these bins are
subsequently used in our mathematical framework. We
remark here that the case of static anchors, considered by
neither MCL, nor MSL, will be investigated in future work.
Our method has been evaluated based on a variety of
metrics. They prove that our method is resistant to high Dol
environments while providing a low localization error
without any extra hardware. Only anchors need to have a
slightly higher storage requirement. A deployment with
more anchors at high Dol decreases the error. The ability to
localize using both single-hop and two-hop anchors greatly
increases the variety of topologies where localization
succeeds. The system implementation proves that the
algorithm functions well on resource constrained devices.
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