
On Optimal Connectivity Restoration

in Segmented Sensor Networks

Myounggyu Won, Radu Stoleru, Harsha Chenji, and Wei Zhang

Department of Computer Science and Engineering, Texas A&M University, USA
{mgwon,stoleru,cjh,wzhang}@cse.tamu.edu

Abstract. This paper investigates the optimal connectivity restoration
in segmented sensor networks, where mobile/relay nodes are optimally
placed to form “bridges” among segments, such that both the average
path length from nodes to the sink and the number of mobile nodes
used are minimized. We formulate the optimal connectivity restoration
as a multi-objective optimization problem and develop centralized and
distributed algorithms for solving it. Given global network topology in-
formation, our centralized algorithm (i.e., Cut Restoration Genetic Al-
gorithm or CR-GA) produces a Pareto Optimal set consisting of mul-
tiple non-dominated solutions. For scenarios where the global network
topology is unknown (e.g., due to unexpected network segmentation) we
develop a Distributed Connectivity Restoration algorithm (i.e., DCR).
DCR restores network connectivity with lower overhead (when compared
with CR-GA), at the cost of a suboptimal solution (i.e., the average path
length and/or number of mobiles used). Through theoretical analysis,
we prove that the worst case performance of DCR is bounded. We also
show the effectiveness of our solutions through extensive simulations and
a proof-of-concept system implementation and evaluation.

1 Introduction

As the cost and form factor of wireless sensor nodes shrink, we envision significant
growth in the demand for enterprise-scale wireless sensor networks (WSNs). An
enterprise-scale WSN consists of disconnected subnetworks called segments, each
serving its own purpose. One example application is an enterprise-scale WSN for
disaster management [1], in which one sensor subnetwork identifies victims under
a rubble pile, while another subnetwork monitors the stability of a damaged
building. An enterprise-scale WSN may also appear in typical WSN applications.
An example is a volcano monitoring application. Since it is difficult to cover the
entire area of a target mountain with nodes, a plausible design option is to deploy
a number of disconnected sub-sensor networks in only critical regions. To enable
a system-wide analysis, data generated in each subnetwork must be efficiently
transmitted to a remote base station. Consequently, mechanisms for optimally
connecting segments are of paramount importance for enterprise-scale WSNs.

Besides segmentation in enterprise-scaleWSNs because of sparse deployments,
networks can often be unexpectedly segmented if many sensors become disabled.

P. Demeester, I. Moerman, and A. Terzis (Eds.): EWSN 2013, LNCS 7772, pp. 131–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

132 M. Won et al.

For example, unexpected network segmentation may occur when hostile users
destroy sensors; when parts of the network are destroyed after a disaster, or
even when environmental factors, such as wind, may arbitrarily relocate/disable
sensors. It is important that the connectivity of these segmented networks must
be immediately restored for correct operation.

Proactive protocols for connectivity restoration of a segmented sensor net-
work have recently received attention [2][3]. These protocols use more powerful
nodes, called mobile/relay nodes, to build “bridges” among segments, so that
the network becomes connected. These mobile nodes can be of various forms –
simple wifi switches, or devices that can even fly [4]. Paying attention to the
cost of mobile nodes, these schemes have focused on minimizing the number of
mobile nodes. However, building bridges with the minimum number of mobile
nodes may lead to suboptimal routing paths between nodes and the sink (i.e.,
the path length). In fact, bridges must be carefully placed by considering several
aspects of a segmented network – the sizes and shapes of segments, and even
possible holes in segments.

Fig. 1. The effects of (a) segment shape,
and (b) holes on connectivity restoration

Two examples depicted in Fig-
ures 1(a) and 1(b) show how the ge-
ometric information of segments, and
holes in segments affect the solution of
connectivity restoration obtained based
on the minimum number of mobile
nodes, respectively. For ease of presen-
tation, we denote static nodes by SNs,
and mobile nodes by MNs hereafter. If
we are to minimize the number of MNs,
a single MN (denoted by triangle p) can be deployed, as shown in Figure 1(a).
In this case, the average hop count for all SNs in segment s1 to reach the sink
is 9.5. However, if we connect segments s1 and s2 through a bridge consisting of
two MNs, denoted by triangles q and r, the average hop count to reach the sink
is reduced to 3.5, at the cost of one more MN. Furthermore, existing connectiv-
ity restoration schemes do not consider possible holes in a network, which may
negatively influence the average hop count. Figure 1(b) illustrates an example.
A connectivity restoration scheme based on the minimum number of MNs will
place a single MN denoted by triangle p. A notable fact is that some packets
may have to unnecessarily travel along the perimeter the hole. However, by de-
ploying two more MNs, denoted by triangles q and r, the average hop count can
be reduced (i.e., packets can now be routed over the shortcut, to reach MN p).

Additionally, protocols for connectivity restoration must be able to cope with
unexpected network segmentation. More precisely, such protocols must provide
mechanisms to autonomously identify network segmentation, abstract the in-
formation about segments and utilize it for optimal connectivity restoration.
State-of-art protocols [2][3] do not offer such mechanisms.

In this paper,we propose algorithms andprotocols designed to address the above
issues. First, we define a problem called the Optimal Connectivity Restoration

On Optimal Connectivity Restoration in Segmented Sensor Networks 133

Problem (OCRP) for a segmented WSN. OCRP minimizes both the number of
deployedmobiles and the average path length from nodes to the sink such that the
connectivity of the segmented network is restored. This problem is formulated as a
multi-objective optimization problem. Based on the observation that the problem
is NP-Hard, for solving it, we propose a centralized heuristic algorithm called the
Connectivity RestorationGenetic Algorithm (CR-GA). The algorithm is designed
for fast convergence towards the Pareto Optimal set by using a novel scheme for
efficiently generating initial solutions, fast evaluation of solution validity (based
on the concept of virtual sensor) and a reduction of the solution search space. Fur-
thermore, in order to handle scenarios when the global network topology, i.e., the
locations of nodes and their neighbors, is not known (e.g., when a network is un-
expectedly segmented) we propose a Distributed Connectivity Restoration (DCR)
algorithm. DCR autonomously detects network segmentation and establishes
bridges to an adjacent segment without relying on the global topology. The dis-
tributed algorithm has lower computation overhead than CR-GA, at the cost of a
suboptimal solution, i.e., longer average path length from nodes to the sink and/or
moremobile nodes used – through a theoretical analysis,we demonstrate thatDCR
has a bounded worst case performance, when compared with the globally optimal
solution. Lastly, we demonstrate the efficiency and feasibility of proposed solutions
through extensive simulations and a proof-of-concept system implementation, re-
spectively.

2 Related Work

Relay node placement: The relay node placement problem (RNP) determines
where to deploy relay nodes, RNs in short, in order to achieve various objectives.
These objectives include providing connectivity [5][6], fault tolerance [7][8][9], and
network lifetime [10][11][12].

Lin and Xue [13] proved the hardness of the relay node placement problem for
connectivity and proposed 5-approximation algorithm. Cheng et al. [6] proposed
a faster randomized 2.5-approximation algorithm. Lloyd and Xue [5] then studied
a more general problem with R ≥ r, where R is the communication radius of
RNs, and r is the communication radius of sensors. These algorithms, however,
focus only on minimizing the number of relay nodes.

Some prior work pursued fault tolerance by ensuring that a given network is
k-connected after deploying RNs [7][8][9]. Bredin et al. [8] presented an O(1)-
approximation algorithm for k ≥ 2. Kashyap et al. [7] studied the fault tolerance
with k = 2 and proposed 10-approximation algorithm. For more general case
with R ≥ r, Zhang et al. [9] proposed 14-approximation algorithm when k = 2.

Some researchers [10][11][12] focused on improving the network lifetime by
deploying RNs. Hou et al. [10] jointly considered the energy provisioning and
relay node placement with the objective of prolonging network lifetime. Wang
et al. [11] studied the performance of dense WSNs when RNs are mobile. They
showed that, with one mobile RN, the network lifetime can be increased by up
to a factor of four. Wang et al. [12] considered the case with varying traffic, and

134 M. Won et al.

provided an algorithm to deploy RNs such that the network lifetime is maxi-
mized with traffic considerations. These algorithms, however, do not consider a
disconnected (segmented) network.

Segmented WSNs: Abbasi et al. [14] proposed two decentralized algorithms
for solving the connectivity restoration problem caused by single node failure.
The algorithm coordinates the movement of mobile nodes in a cascading man-
ner with the objective of minimizing the distance moved. Several work proposed
to restore the connectivity of a segmented network caused by multiple nodes’
failure. Almasaeid and Kamal [15] designed a scheme that models the move-
ment of a mobile agent to make a segmented network connected over time.
However, it is infeasible to assume that mobile nodes continuously move, be-
cause mobility consumes significant energy. Lee and Younis [2][3] considered the
problem of federating disjoint segments. Especially, they focused on minimiz-
ing the number of relay nodes required to restore the connectivity. Noting that
the connectivity-restoration problem is NP-hard, they provided a heuristic algo-
rithm. Senel et al. [16] tackled the same problem by establishing a bio-inspired
spider-web topology. However, these schemes focus only on minimizing the num-
ber of relay nodes.

3 System Model and Problem Formulation

We consider a disconnected wireless sensor network consisting of a set of seg-
ments denoted by S = {s1, s2, ..., sn}. Each segment may have holes (defined as
regions without deployed nodes). In a segmented network, there are two types of
deployed nodes: static nodes (SNs) denoted by the set X = {SN1, SN2, ..., SNN},
and mobile nodes (MNs) denoted by the set Y = {MN1,MN2, ...,MNM}. We
assume that each node knows its location. The MNs are uniformly distributed
in all segments. As we will clarify in Section 5, we uniformly distribute MNs
in segments, so that the WSN can autonomously cope with unexpected network
segmentation. Considering deployed SNs and MNs, we represent our segmented
network as a HCG (Hybrid Communication Graph), formally defined as follows:

Definition 1. A hybrid communication graph HCG(r,X ,Y) is an undirected
graph with vertices X ⋃Y, and edges defined as follows. Edge exy, where x, y ∈
X ⋃Y, exists if and only if d(x, y) < R, where d(x, y) is the Euclidean distance
between nodes x and y, and R is the communication range of a node. �

Each SNi periodically senses the area of interest. Sensed data from each sensor
is transmitted to the sink through the shortest path. We denote by Pi the path
from SNi to the sink and by |Pi| the length of path Pi. We assume that MNs
have significantly higher energy in comparison with SNs. Having defined our
system model, we now formally describe the Optimal Connectivity Restoration
Problem (OCRP), as follows:

On Optimal Connectivity Restoration in Segmented Sensor Networks 135

Definition 2. Given a set of SNs X and a set of segments S with holes, OCRP
places a set of mobiles Y (Y ⊆ Y) satisfying the following three conditions:

1)
∑

i∈X |Pi|
|X | (i.e., the average path length of all SNs) is minimized; 2) |Y| is

minimized; and 3) induced HCG is connected. �

In particular, the second condition of OCRP ensures the robustness against un-
expected network segmentation; more specifically, by keeping more spare MNs
(i.e.,Y − Y) uniformly distributed in segments, we improve the chance of au-
tonomous network connectivity restoration (as it will be described in Section 5).

Minimize

⎡

⎣

∑
i∈X |Pi|
|X | ,

∑

i,j

yij

⎤

⎦ .

HCG is connected. (1)

yij ∈ {0, 1}. (2)
∑

i,j

yij ≤M. (3)

Fig. 2. OCRP problem

We discretize the problem by dividing the
network into grid regions, where each grid
is a square with side R

2
√
2

ensuring that a

MN in a grid can reach MNs in neighboring
grids. Grids can be created by pre-computing
a rectangular region that wraps a target area
and dividing the rectangular region. Each
node then easily determines in which grid
it is located based on its location. Now the
OCRP problem is to decide the grid regions
where MNs will be deployed. This decision is
represented by a binary variable yij , where
yij = 1 means a MN is placed and yij = 0 means no MN is placed, on the
grid located at (i, j). OCRP is then formulated as a multi-objective optimization
problem as shown in Figure 2. The first constraint ensures network connectiv-
ity, and second and third constraints specify the ranges of variables. Finding
the minimum number of MNs for restoring network connectivity is NP-Hard [2].
Hence, OCRP is NP-Hard.

4 Centralized Connectivity Restoration

Fig. 3. A representation of a chromosome

In this section we present a central-
ized algorithm, called Connectiv-
ity Restoration Genetic Algorithm
(CR-GA), for solving OCRP. Given
global topology information, CR-
GA finds a near-optimal set of
locations for MNs. Genetic algo-
rithms are well suited for solving
multi-objective optimization prob-
lems, because they can find a set of
non-dominated solutions in parallel by maintaining a population of solutions [17]
and they can efficiently solve NP-Hard problems [18]. Since our problem is an
NP-Hard multi-objective optimization problem, we propose a genetic algorithm
called CR-GA. CR-GA is designed for fast convergence to a close-to-optimal so-
lution and uses a novel initial solution generation scheme, a virtual sensor-based
solution evaluation scheme, and solution search space limitation.

136 M. Won et al.

Initial Population: Genetic algorithms represent solutions to given problems
as chromosomes. A chromosome is encoded as a bit string. In our problem, each
bit represents a grid in the network. A bit is set to 1 when a MN is placed
in the corresponding grid; otherwise, the bit is set to 0. Given global topology
information, CR-GA computes the average path length and the number of used
MNs for each chromosome (i.e., chromosome’s fitness or solution’s optimality).
However, computing the shortest paths for all SNs for each chromosome to ob-
tain the average path length is computationally intensive. CR-GA thus uses an
optional scheme for reducing the computation overhead, when nodes are rela-
tively uniformly distributed. Consider Figure 3, which shows two segments (one
containing the sink, and the other one containing five SNs) and a MN connecting
the two segments. CR-GA represents the SNs in each grid as a virtual SN at the
center of the grid. CR-GA then calculates the average path length by considering
the shortest paths only for the virtual SNs in the grid network.

Fig. 4. (a) Initial population generation; and
(b) Generated bridges

Having explained how the chro-
mosome is constructed and how it’s
fitness is evaluated, we introduce a
scheme for generating initial popula-
tion of k chromosomes, where k is a
system parameter. Producing high-
quality, yet diverse, initial popula-
tion is critical for fast convergence.
We propose a scheme which consists
of two steps. In the first step, we ran-
domly choose a point from each segment. In the second step, we select k1 ∈ N, a
parameter, and divide the 2π angle around the sink into 2π/k1 sets. Figure 4(a)
shows an example with k1 = 4, where different polygons represent segments.
We then apply a heuristic Minimum Steiner Tree algorithm for each subregion.
The first step of the scheme ensures diversity, i.e., diverse bridge locations are
considered; the second step of the scheme aims to obtain high-quality initial pop-
ulation, i.e., the average path length from the randomly selected points to the
sink are locally minimized in subregions. Figure 4(b) shows the results as a tree.
We then set the bits of a chromosome corresponding to the grids intersecting
with the resulting tree, if the grids are either outside segments, or inside holes
in segments. We repeat the above process k times, obtaining k chromosomes –
our initial population.

Fig. 5. Correction of a chromosome
Fig. 6. Search
space limitation

Evolution and
Correction:A sequence
of evolutionary processes
– selection, crossover,
and mutation – are
applied to the initial
population to produce
a higher quality pop-
ulation. We apply the

On Optimal Connectivity Restoration in Segmented Sensor Networks 137

well-known rank-based selection algorithm [17] to implement the selection; more
specifically, we rank each chromosome based on the number of dominations,
e.g., if a chromosome is dominated by three chromosomes (i.e., both the number
of used mobile nodes and the average path length are smaller than the three
chromosomes), its rank is 3, and chromosomes with rank 0 are called the non-
dominated chromosomes. We sort all k chromosomes in increasing rank order and
select the first half. After the selection process, we randomly choose two chro-
mosomes, say p1 and p2, from the selected chromosomes to perform a crossover
operation. We select a position uniformly at random in a chromosome, say r.
We then build a new chromosome by taking the first r bits from p1, and the
remaining bits from p2. We repeat this operation k

2 times, creating a new set of
k chromosomes. We then perform the mutation for the generated chromosomes,
where we randomly select k2 bits and switch them. After evolutionary processes
are applied, some chromosomes might not satisfy our constraints. As shown in
Figure 5(a), some segments are not connected to the sink. To address this prob-
lem, we first identify disconnected grids. For each such grid, we find the closest
disconnected grid and connect them. Figure 5(b) shows the chromosome after
the patching process. This evolution and correction process iterates until the
set of non-dominated solutions converges, e.g., the algorithm stops when the set
does not change for k3 consecutive iterations.

Search Space Limitation: In order to reduce the convergence time of our
algorithm, we propose to limit the search space. More precisely, we consider the
placement of MNs only within the convex hull of all segments (see Figure 6 for
an example) based on the theorem (we omit the proof due to space limit):

Theorem 1. The optimal solution does not place MNs outside the convex hull
of network segments.

As described, if information about global topology is given, CR-GA obtains a set
of non-dominated solutions for OCRP. However, such information may not be
available, especially when a network is unexpectedly segmented due to, for ex-
ample, a large number of disabled sensors by hostile users. The following section
describes distributed heuristic algorithms that allow for autonomous connectiv-
ity restoration.

5 Distributed Connectivity Restoration

This section presents a distributed heuristic algorithm called the Distributed
Connectivity Restoration (DCR) algorithm. The DCR algorithm establishes lo-
cally optimal bridge(s) between two adjacent segments without considering all
segments in a network; thus, DCR has lower overhead (when compared with
CR-GA), at the cost of a suboptimal solution (possibly longer paths from nodes
to the sink and/or more MNs used), allowing any MN to compute the solution
for OCRP. We first describe an overview of the algorithm.

138 M. Won et al.

The DCR algorithm consists of mainly three phases. In the first phase, nodes
autonomously detect network segmentation and find the boundary information of
the segment they belong to. The second phase delivers the boundary information
to an adjacent segment. Since this information can not be delivered via packet
transmissions because the network is segmented, our protocol uses the concept
of ferrying – one MN in a disconnected segment stores the boundary information
and moves towards the sink until it meets an adjacent segment. It is important
to observe that since mobility involves very high energy consumption, it may
be difficult to move all the way to the sink, especially for large scale networks.
Upon reaching an adjacent segment, the ferry performs the third phase, where
it finds the locally optimal (i.e., between two adjacent segments) solution for
OCRP. The following sections describe the details of each phase.

Detection and Abstraction of Segments: Nodes can detect segmentation
through various methods, such as distributed network cut detection algorithms
[19]. Once a node detects network segmentation, it broadcasts a control packet
to nodes in the disconnected segment it belongs to. Upon receiving this control
packet, nodes in the disconnected segment execute a boundary detection algo-
rithm, e.g., [20] to find the boundary nodes of the segment. When the boundary
node detection phase is finished, the boundary node with the largest ID becomes
the leader. This leader node stores the locations of the boundary nodes and then
broadcasts its ID to the MNs in the segment.

Movement of a Ferry: Upon receiving the ID of the leader, MNs inform the
leader of their remaining energy. The leader then selects a MN with the largest
remaining energy and sends the locations of the boundary nodes to the selected
MN. The selected MN, after receiving this information, starts the ferrying pro-
cess, by traveling towards the sink until it meets an adjacent segment.

Fig. 7. An example of ferry
movement in DCR

When a ferry reaches an adjacent segment, it
checks the state of the segment – A segment’s
state is disconnected when all nodes in the seg-
ment are disconnected from the sink; otherwise,
connected. If the state is connected, then the ferry
executes the third phase of the DCR algorithm,
which finds a locally optimal set of locations for
MNs, that connects the two adjacent segments. If
the state is disconnected, the ferry waits until the
state changes to connected.

Consider Figure 7 for an example. Assume that network segmentation re-
sulted in four segments denoted by {s1, s2, s3, s4}. Assume that s2 first sends a
ferry along the dotted line towards the sink. This ferry meets a node at point
d and checks the state of segment s4, which is disconnected, because it is not
yet connected to the segment containing the sink. Thus, this ferry waits un-
til the state changes to connected. Next, assume that segment s4 sends a ferry.

On Optimal Connectivity Restoration in Segmented Sensor Networks 139

This ferry reaches the segment containing the sink, and decides the location of
bridge ab. The state of segment s4 changes to connected ; and the waiting ferry
sent from segment s2 now builds a locally optimal bridge by running the third
phase of the DCR algorithm, described in the following section.

Algorithm 1 DCR: code for ferry f

1: if sc reached then
2: // Step 1; VisEdge(sc, sd): Return grids on

visible edges of sc and sd.
3: {Vc, Vd} ← VisEdge(sc, sd).
4: // Step 2
5: for each gd ∈ Vd, compute h(gd).
6: if sc is connected then
7: // Step 3
8: for each (gd, gc) pair, gd ∈ Vd, gc ∈ Vc,
9: compute (nm, pl).

10: for each nm, find plmin.
11: for each nm, compute μ.
12: find (gd, gc, h(gd)) s.t. μ is maximized.
13: else
14: wait until s2 is connected.

Computation of Locally
Optimal Solution: This
section explains the details
of the third phase, sum-
marized in Algorithm 1.
The computation of a lo-
cally optimal solution in-
volves three major steps: 1)
candidate grids selection; 2)
bridge placement on holes;
and 3) bridge selection.

We are given two adja-
cent segments: one in a dis-
connected state denoted by
sd, and the other one in a
connected state denoted by
sc. A ferry sees a network as a set of grid regions, as explained in Section 3 (See
Figure 8). Define a set of grids that are contained in segments sd and sc by Gd

and Gs, respectively. In particular, one grid in sc is called the destination grid
and denoted by t. The destination grid is either a grid containing the sink when
the sink is in sc, or a grid containing the entry point of a bridge that connects
to other connected segment when the sink is not in sc.

Fig. 8. An illustration of
visible edges

Fig. 9. Bridge place-
ment on holes

The first step of the algo-
rithm is to find a set of tar-
get grids for adjacent seg-
ments sc and sd. Given sd
and sc, we first find edges
visible to each other. Con-
sider Figure 8 for an ex-
ample. The two segments
are represented by triangles
�abc and �def . In this ex-
ample, the visible edges are
{bc, ca} for segment sc, and
{de} for segment sd. Target
grids are the grids that are located on the visible edges of the two segments. We
denote the set of target grids for sd by Vd, and for sc by Vc.

140 M. Won et al.

Fig. 10. An example for
marginal utility computation

In the second step, the algorithm places
bridges over holes in the segment. For each
gd ∈ Vd and each hole hi, invisible edges of hole
hi from gd are identified. See Figure 9 for an
example. By drawing two tangent lines from gd
to hole hi, we can find that line segments p1p2
and p2p3 are the invisible edges. Define the set
of grids on the invisible edges for hole hi by Vhi .
Now for each g ∈ Vhi , we consider a line start-
ing from gd, passing through g. We denote the farthest intersection with the
edges of segment sd by p as shown in Figure 9 (there may exist multiple such
intersections). If line segment gp intersects other holes, hi is not considered. We
then consider two tangent lines from p to hole hi. These two tangent lines, with
the edges of hole hi and possibly with the edges of segment sd, create a region
Ag, which represents the number of grids that will contribute to the reduction
of the average path length by placing the bridge on that hole. For example, the
two tangent lines from p (i.e., −→pp1 and −→pp2) create a region Ag = {p, p1, p2}. We
then select g′ from Vhi such that Ag is maximized. We denote such grid g′ for
each gd(∈ Vd) by h(gd).

In the third step, we consider line segment gdgc for each gd(∈ Vd) and gc(∈ Vc)
as a bridge connecting two adjacent segments sd and sc. If line segment gdgc
intersects any of the visible edges, the line segment is not considered. Now for
each pair (gd, gc), representing a bridge, we compute the average path length
denoted by pl and the number of used MNs denoted by nm as follows: pl =∑

g∈Gd
(d(g,gd)+d(gd,gc)+d(gc,t))

|Gd| , where nm represents the number of grids on gdgc.

Here the term d(p, q) refers to the length of the shortest path connecting p and q.
In particular, for computing d(g, gd), we consider two cases: (1) placing bridges
on holes according to pre-computed h(gd) (i.e., placing MNs on line segment
gdh(gd) that is within hole(s)); (2) not placing bridges on holes. After computing
pl and nm for all (gd, gc) pairs, we have a set of (nm, pl) pairs (the table on the
left-hand side of Figure 10 gives an example). Different from CR-GA (which
produces a Pareto Frontier), due to the lack of computational capabilities, the
DCR algorithm chooses one pair that maximizes the marginal utility. Marginal
utility shows the incremental contribution of each added MN to the average path
length. Choosing the solution with maximum marginal utility thus leads to the
most economic decision. For example, for each nm, we first find the minimum
pl, denoted by plmin. The table on the right-hand side shows pairs (mn, plmin).
For each pair (mn, plmin), we then compute the marginal utility, denoted by μ,
as follows: μ = pl−plmin

nm−nmmin
. In our example, from all the pairs (mn, plmin), our

DCR algorithm selects (5, 4), the most economic decision.

6 Algorithms Analysis

As presented in Section 5, the DCR algorithm finds a locally optimal solution
for two adjacent segments. If we consider all segments in a network, however,

On Optimal Connectivity Restoration in Segmented Sensor Networks 141

a simple combination of locally optimal solutions may not guarantee optimal
performance. Thus, in this section, we address the following research question:
how much worse is the performance of the DCR algorithm, when compared with
the centralized CR-GA?

For answering the question, we consider a network with a circular shape cen-
tered at the sink. The radius of the network is r, where r 	 1. As mentioned in
Section 3, there are n segments in the network. Considering a very large network
(i.e., r	 1) for deriving worst-case bounds, segments and MNs are represented
as points in the network.

Fig. 11. (a) Worst case scenario; (b) The do-
main and codomain of Pareto Frontier

We first identify the worst case
scenario for the DCR algorithm
and analyze how much worse it
is, when compared with the glob-
ally optimal solution. The follow-
ing lemma proves the worst-case
average path length and number
of used MNs for the DCR algo-
rithm.

Lemma 1. The DCR algorithm shows the worst performance when n segments
are uniformly positioned on the circumference of the network.

Proof. Figure 11(a) shows the worst case scenario. It is easy to note that, for
this scenario, the average path length is r, and the number of used MNs is nr.
Assume by contradiction that there is a scenario with either the average path
length greater than r, or the number of used MNs greater than Nr. In order to
have the average path length greater than r, there must be at least one segment
with its path length greater than r. Since, for this scenario, the DCR algorithm
places a bridge as a straight line towards the sink, the path length cannot be
greater than r, i.e., a contradiction. Similarly, in order to have the number of
used MNs greater than nr, we must have at least one bridge with more than r
MNs; a bridge with more than r MNs is no longer a straight line. �

We define a two dimensional Cartesian coordinate system with the domain (i.e.,
X-axis, and denoted by M) representing the number of used MNs and the
codomain (i.e., Y-axis, and denoted by H) representing the average path length.
Then, the Pareto frontier, i.e., the solution of CR-GA, is a curve represented by
a function f : M → H . We are interested in the maximum distance between
any point on the curve (a CR-GA solution) and the point that represents the
worst-case DCR solution (i.e., as obtained by Lemma 1). We call this distance
performance gap. The main idea for obtaining the maximum performance gap
is to bound the domain and codomain of function f . The following two lemmas
find the bounds for the domain and codomain of function f , respectively.

Lemma 2. The domain M of f is bounded by 0 < M ≤ nr.

142 M. Won et al.

Proof. Since the path length from any segment to the sink for CR-GA is greater
or equal to r, the average path length for CR-GA is greater or equal to r, i.e.,
H ≥ r. Assume by contradiction that M > nr. Then, we have M > nr and
H ≥ r, which means that any solution for CR-GA (i.e., points on the curve f) is
worse than the solution obtained by the DCR algorithm (i.e., both the number
of used MNs and average path length are greater than the DCR algorithm). �

Lemma 3. The codomain M of f is bounded by r ≤ H ≤ nr.

Proof. By Lemma 2, we know that H ≥ r. Since the domain of f is bounded
by nr, the average path length is maximized when all paths from segments are
aggregated into a single path of length nr. �

Theorem 2. The performance gap is bounded by nr
√

1 + (n−1
n)2

Proof. Based on Lemma 2 and Lemma 3, the Pareto optimal curve f can be one
of any possible curves defined in 0 < M ≤ nr and r < H ≤ nr, as shown in
Figure 11(b). Thus, the maximum distance from point (nr, r) to curve f is the

distance from point (nr, r) to point (0, nr), which is nr
√
1 + (n−1

n)2. �

Theorem 2 shows that the performance of DCR degrades asymptotically linearly
with the number of segments n and the network diameter r. The interpretation of
this result is that, since DCR builds bridges based on adjacent segments without
taking into account all segments in the network, the overall performance degrades
when there are more segments. Besides, if the diameter of a network is large, the
distances between segments and the sink are more likely to be longer; thus, the
performance degrades, because a better solution may be found by aggregating
such long paths. However, this result also proves that the performance does not
degrade arbitrarily, only linearly with the number of segments and the network
diameter.

7 Simulation Results

For performance evaluation, we consider a 2,000m × 2,000m area with randomly
generated segments of different sizes and shapes. Sensor nodes are uniformly
deployed in each segment. To account for more realistic wireless communication,
we adopt the radio model [21], which defines the degree of irregularity (DOI)
as the maximum radio range variation in the direction of radio propagation. In
our experiments, the radio range of a node is 40m with DOI=0.4, resulting in a
network density of approximately 8 nodes/radio range.

We implemented DCR, CR-GA, and the state-of-art cut restoration scheme
called Cell-based Optimized Relay node Placement (CORP) [2] in C++. CORP
is a state-of-the-art centralized heuristic algorithm for restoring network con-
nectivity by using the fewest MNs possible. For fair performance comparison
between DCR and CR-GA, we select a CR-GA solution on the Pareto Opti-
mal set (i.e., an average path length and the corresponding number of used

On Optimal Connectivity Restoration in Segmented Sensor Networks 143

MNs) with the largest marginal utility. We used the following values for CR-
GA: k1 = 4, k2 = 10 % of total bits, and k3 = 15. CR-GA was executed on a PC
with 64bit Ubuntu, Intel Core i7 CPU, and 8 GByte memory.

For our evaluation, we measured the average path length in hops and the
number of used MNs by varying several properties related to a segmented sensor
network: Segment Size (SS), Number of Segments (NS), Location of Sink (LS),
and Hole Size (HS). A segment was represented as a polygon. The vertices of
the polygon were selected within a randomly located circle with radius SS. SS
is thus used to control the size of a segment. We ensure that the area covered
by a segment is at least 20% of that of a circle with radius SS. The parameter
LS represents the distance between the sink and the center of the network. The
default values for our parameters were: SS=200, NS=4, LS=0, HS=0.

Evaluation of CR-GA: In each iteration of CR-GA, a set of chromosomes are
generated. CR-GA computes the rank of each chromosome based on the average
path lengths and numbers of MNs of the set of chromosomes. Our proposed
virtual sensor (VS) can significantly reduce the time to compute chromosome’s
rank, when nodes are uniformly distributed. To verify this, we compared the
time taken by CR-GA for computing ranks when VS is used, with the time
taken when VS is not used. Figure 12 presents the results. As shown, the average
rank-computation time increased linearly with the number of nodes. In contrast,
CR-GA that uses VS showed a constantly small average rank computation time.

Figure 13 shows the Pareto Optimal Set obtained for a network with the
default setting. Each point of the graph represents a feasible solution. As the
graph shows, when we can afford a large number of MNs, we can achieve a better
average path length by placing more MNs; in contrast, a solution that uses a
small number of MNs has a longer average path length, but the spare MNs can
be used for detecting unexpected network separation, increasing robustness.

Effect of Number of Segments: In this section we investigate how the Num-
ber of Segments (NS) affects the performance of the three protocols. We varied
NS from 4 to 12, while having all other parameters set to default values. Fig-
ure 14 and Figure 15 show the average path length and the number of used
MNs for the three protocols, respectively. Comparing CR-GA and CORP, we
observed that both used a similar number of MNs regardless of NS. However,
CR-GA produced much smaller average path length up to 20%. The reason is
that, while CORP tries to minimize only the number of used MNs, CR-GA min-
imizes both the average path length and the number of used MNs. It should
be noted that CR-GA involves higher computation than CORP, because it is
based on a genetic algorithm. However, what really important is higher network
performance achieved by optimizing both the number of MNs and average path
length, because the computation of CR-GA is performed only once in a pow-
erful device. Comparing CR-GA and DCR, we observe that DCR produced a
slightly smaller average path length, i.e., about 4%. The reason is that DCR
builds multiple bridges towards the sink without merging them. The smaller av-
erage path length, however, required a significantly higher (about 35%) number

144 M. Won et al.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 9 10 11 12 13 14E
x
e

c
u

ti
o

n
 t

im
e

 p
e

r
it
e

ra
ti
o

n
 (

S
e

c
.)

Network density

Default
Virtual-Sensor

Fig. 12. Computation
speed w/ and w/o VS

 32

 32.5

 33

 33.5

 34

 34.5

 35

 182 184 186 188 190

A
v
g

.
p

a
th

 l
e

n
g

th

Number of used MNs

Pareto

Fig. 13. Pareto Optimal
set for default settings

 30

 32

 34

 36

 38

 40

 42

 44

 4 5 6 7 8 9 10 11 12

A
v
g
.
p
a
th

 l
e
n
g
th

NS

CR-GA
DCR

CORP

Fig. 14. Effect of NS on
average path length

 150

 200

 250

 300

 350

 400

 450

 500

 550

 4 5 6 7 8 9 10 11 12

N
u

m
b

e
r

o
f

u
s
e

d
 M

N
s

NS

CR-GA
DCR

CORP

Fig. 15. Effect of NS on
number of mobiles

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 100 200 300 400 500 600 700 800

A
v
g
.
p
a
th

 l
e
n
g
th

LS (m)

CR-GA
DCR

CORP

Fig. 16. Effect of LS on
average path length

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f
u
s
e
d
 M

N
s

LS (m)

CR-GA
DCR

CORP

Fig. 17. Effect of LS on
number of mobiles

of used MNs. An interesting observation was that the difference in the number
of MNs used by the two protocols increased as NS increased. We believe this
result confirms our theoretical analysis which shows that the performance gap
between CR-GA and DCR increases with the number of segments.

Effect of Sink Location: In this section we investigate how the Location of the
Sink (LS) affects the performance of the three protocols. We select sink locations
to be LS meters away from the center of the network, towards one corner of the
network. We set all other parameters to their default values. Figure 16 and
Figure 17 show the average path length and the number of used MNs for the
three protocols, respectively. One immediate observation was that the average
path length and the number of used MNs for all three protocols increased as we
increased LS. This is simply because when the sink is located far from the center
of the network, a packet must travel longer distance to reach it. Comparing
CR-GA and CORP, we found that the two protocols used a similar number of
MNs. However, CR-GA produced much smaller average path lengths up to 75%.
An interesting observation was that CORP’s performance was more significantly
affected by LS, than CR-GA; more precisely, while the average path length of
CR-GA gradually increased with increasing LS, the average path length of CORP
increased more steeply. The reason is that CORP is designed to build bridges
towards the center of the network. Next, we compared CR-GA with DCR. While
they achieved similar average path lengths, DCR used more MNs up to 20%.
The reason is the same as above, namely that DCR builds bridges towards
the sink without merging them. In fact, CR-GA finds a balance between the
number of MNs and the average path length by appropriately merging bridges.
An interesting observation was that the difference between the number of MNs
used by DCR and CR-GA increased with increasing LS. The reason is that,

On Optimal Connectivity Restoration in Segmented Sensor Networks 145

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 200 250 300 350 400 450 500

A
v
g
.
p
a
th

 l
e
n
g
th

SS (m)

CR-GA
DCR

CORP

Fig. 18. Effect of SS on
average path length

 80

 100

 120

 140

 160

 180

 200 250 300 350 400 450 500

N
u
m

b
e
r

o
f
u
s
e
d
 M

N
s

SS (m)

CR-GA
DCR

CORP

Fig. 19. Effect of SS on
number of mobiles

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800

A
v
g
.
p
a
th

 l
e
n
g
th

HS (m)

CR-GA
DCR

CORP

Fig. 20. Effect of HS on
average path length

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f
u
s
e
d
 M

N
s

HS (m)

CR-GA
DCR

CORP

Fig. 21. Effect of HS on
number of mobiles

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 3 3.5 4 4.5 5 5.5 6 6.5 7

C
D

F

Hop Count

DCR
CORP

Fig. 22. CDF of hop
count

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 2 3 4 5

P
D

R

Packet Arrival Rate (sec)

DCR
CORP

Fig. 23. Packet delivery
ratio

since DCR favors building a direct bridge towards the sink, if the sink is far, it
requires more MNs to connect the segment to the sink.

Effect of Segment Size: In this section we investigate the effect of Segment Size
(SS). Figure 18 and Figure 19 depict the average path length and the number
of used MNs for the three protocols, respectively. An immediate observation
was that as we increased SS, both the average path length and the number of
used MNs decreased for all protocols. The reason is simply that larger segments
take more space in the network, leaving fewer empty spaces. Thus fewer MNs are
required for connectivity restoration. Comparing CR-GA and DCR, we observed
that both showed a similar performance in terms of the average path length. The
difference comes from the number of used MNs, as CR-GA used about 10% fewer
MNs on average, a relatively small improvement. This result is not surprising
since the number of segments was the default value of 4. With few segments,
DCR builds bridges quite well. Second, we compared CR-GA and CORP. We
observed that the average path length of CORP was worse than CR-GA by up
to 25%. The reason is that CORP does not consider the average path length. An
interesting observation was that the difference in the number of MNs between
CORP and CR-GA became larger as SS increased. We believe the reason is
that CORP chooses a representative node (i.e., the starting point of bridges,
selected for each segment) without considering the size and shape of segments in
a network. Therefore, the impact of sub-optimally selected representative nodes
becomes greater as the segment size becomes larger (i.e., more possible locations
for selecting representative nodes).

Effect of Hole Size: To evaluate the impact of holes on protocols’ performance,
we consider a scenario with two large rectangular-shaped segments (200m ×
1,000m), and place holes of varying sizes in them. In each segment we create a
bar-shaped hole, of varying heights (i.e., bars with different sizes of

146 M. Won et al.

100m × [0, 800]m). Figure 20 and Figure 21 depict the average path length
and the number of used MNs for the three protocols, respectively. As shown
in Figure 20, for all three protocols, the average path length increased with an
increasing hole size. The reason is that larger holes result in longer, detoured
routing paths. It should be noted that, although DCR and CR-GA place bridges
on holes, depending on the locations of bridges, there are still nodes that use
detoured paths, thereby showing small increases. Comparing CR-GA and DCR,
we observed that CR-GA produced about 9% smaller path length by using more
MNs. The reason is that, while DCR places only a single, straight-line bridge
over a hole, CR-GA places multiple bridges, or even merge bridges. Comparing
CR-GA and CORP, we observed that although CR-GA places MNs on a hole,
CORP used more MNs for restoring the connectivity. The reason is the large
sizes of the two segments used in this experiment. As we mentioned previously,
CORP more likely to choose representative nodes far from the sink, when the size
of a segment is large. This suboptimal selection of representative nodes results
in a large number of MNs. Furthermore, since CORP does not handle holes, it
has longer average path length.

8 System Evaluation

Fig. 24. A deployment area at a
Disaster Training Facility

As a proof-of-concept system, we implemented
our DCR algorithm in TinyOS 2.1.1 for the
TelosB platform and compared it with CORP.
We deployed 10 TelosB motes in each of two seg-
ments in a disaster training facility of approxi-
mately 150m by 150m, as shown in Figure 24.
Routing paths from motes to the sink were ob-
tained using CTP [22]. Motes reported events,
with varying reporting rates, i.e., 250msec,
500msec, 1sec, and 5sec, by sending a packet.
We manually placed TelosB motes on the computed bridges based on DCR and
CORP, using TelosB motes as MNs. As Figure 24 shows, the solid line repre-
sents the bridges for CORP, and the dotted line the bridges for DCR; filled
circles represent MNs. We measured the path length in hops and computed the
packet delivery ratio at the sink.

Figure 22 shows the cumulative distribution function for path length (in hops)
for DCR and CORP. As shown, DCR has a smaller hop count. The reason is
that CORP, to reduce the number of MNs, merged two bridges, resulting in
longer paths. We then compared the Packet Delivery Ratio (PDR) of DCR and
CORP. Figure 23 shows the results. For both protocols, the PDR decreased as
the packet arrival interval decreased. A notable observation was that the PDR of
CORP more rapidly decreased. We believe that the reason is because the merged
paths increased the chance of collisions and possible congestion.

On Optimal Connectivity Restoration in Segmented Sensor Networks 147

9 Conclusions

This paper investigates optimal connectivity restoration in segmented WSNs,
an important, largely unexplored problem. Given the global network topology,
our centralized algorithm is used to restore the network connectivity such that
both the average path length and number of used mobile nodes are minimized.
A distributed scheme is also developed for enabling nodes to autonomously cope
with unexpected network segmentation at reduced computational costs.

Acknowledgements. We thank Dr. Marco Zuniga for shepherding this paper.
This work was funded in part by NSF awards 1127449, 1145858, and 0923203.

References

1. George, S.M., Zhou, W., Chenji, H., Won, M., Lee, Y., Pazarloglou, A., Stoleru,
R., Barooah, P.: DistressNet: a wireless AdHoc and sensor network architecture
for situation management in disaster response. IEEE Communications (2010)

2. Lee, S., Younis, M.: Optimized relay placement to federate segments in wireless
sensor networks. IEEE JSAC (2010)

3. Lee, S., Younis, M.: Recovery from multiple simultaneous failures in wireless sensor
networks using minimum steiner tree. JPDC (2010)

4. Pruhit, A., Sun, Z., Mokaya, F., Zhang, P.: Sensorfly: Controlled-mobile sensing
platform for indoor emergency response applications. In: IPSN (2011)

5. Lloyd, E., Xue, G.: Relay node placement in wireless sensor networks. IEEE TOC
(2007)

6. Cheng, X., Du, D.-Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor
networks. WINET (2008)

7. Kashyap, A., Khuller, S., Shayman, M.: Relay placement for higher order connec-
tivity in wireless sensor networks. In: INFOCOM (2006)

8. Bredin, J.L., Demaine, E.D., Hajiaghayi, M., Rus, D.: Deploying sensor networks
with guaranteed capacity and fault tolerance. In: MobiHoc (2005)

9. Zhang, S.W., Xue, G., Misra: Fault-tolerant relay node placement in wireless sensor
networks: Problems and algorithms. In: INFOCOM (2007)

10. Hou, Y., Shi, Y., Sherali, H., Midkiff, S.: Prolonging sensor network lifetime with
energy provisioning and relay node placement. In: SECON (2005)

11. Wang, W., Srinivasan, V., Chua, K.-C.: Extending the lifetime of wireless sensor
networks through mobile relays. IEEE/ACM ToN (2008)

12. Wang, F., Wang, D., Liu, J.: Traffic-aware relay node deployment: Maximizing
lifetime for data collection wireless sensor networks. IEEE TPDS (2011)

13. Lin, G.-H., Xue, G.: Steiner tree problem with minimum number of steiner points
and bounded edge-length. Inf. Process. Lett. (1999)

14. Abbasi, A., Younis, M., Akkaya, K.: Movement-assisted connectivity restoration in
wireless sensor and actor networks. IEEE TPDS (2009)

15. Almasaeid, H.M., Kamal, A.E.: Data delivery in fragmented wireless sensor net-
works using mobile agents. In: MSWiM (2007)

16. Senel, F., Younis, M., Akkaya, K.: Bio-inspired relay node placement heuristics for
repairing damaged wireless sensor networks. IEEE TVT (2011)

148 M. Won et al.

17. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
Formulation discussion and generalization. In: Proceedings of the 5th International
Conference on Genetic Algorithms (1993)

18. Kim, H., Shin, K.: Asymmetry-aware real-time distributed joint resource allocation
in ieee 802.22 wrans. In: INFOCOM (2010)

19. Won, M., George, M., Stoleru, R.: Towards robustness and energy efficiency of cut
detection in wireless sensor networks. Elsevier Ad Hoc Networks (2011)

20. Li, F., Luo, J., Zhang, C., Xin, S., He, Y.: Unfold: Uniform fast on-line boundary
detection for dynamic 3d wireless sensor networks. In: MobiHoc (2011)

21. He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.: Range-free local-
ization schemes for large scale sensor networks. In: MobiCom (2003)

22. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree proto-
col. In: SenSys (2009)

	On Optimal Connectivity Restoration
in Segmented Sensor Networks
	Introduction
	Related Work
	System Model and Problem Formulation
	Centralized Connectivity Restoration
	Distributed Connectivity Restoration
	Algorithms Analysis
	Simulation Results
	System Evaluation
	Conclusions
	References

